Coarse-grained Langevin approximations and spatiotemporal acceleration for kinetic Monte Carlo simulations of diffusion of interacting particles

Sasanka Are , Markos A. Katsoulakis , Anders Szepessy

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 653 -682.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 653 -682. DOI: 10.1007/s11401-009-0219-x
Article

Coarse-grained Langevin approximations and spatiotemporal acceleration for kinetic Monte Carlo simulations of diffusion of interacting particles

Author information +
History +
PDF

Abstract

Kinetic Monte Carlo methods provide a powerful computational tool for the simulation of microscopic processes such as the diffusion of interacting particles on a surface, at a detailed atomistic level. However such algorithms are typically computationally expensive and are restricted to fairly small spatiotemporal scales. One approach towards overcoming this problem was the development of coarse-grained Monte Carlo algorithms. In recent literature, these methods were shown to be capable of efficiently describing much larger length scales while still incorporating information on microscopic interactions and fluctuations. In this paper, a coarse-grained Langevin system of stochastic differential equations as approximations of diffusion of interacting particles is derived, based on these earlier coarse-grained models. The authors demonstrate the asymptotic equivalence of transient and long time behavior of the Langevin approximation and the underlying microscopic process, using asymptotics methods such as large deviations for interacting particles systems, and furthermore, present corresponding numerical simulations, comparing statistical quantities like mean paths, auto correlations and power spectra of the microscopic and the approximating Langevin processes. Finally, it is shown that the Langevin approximations presented here are much more computationally efficient than conventional Kinetic Monte Carlo methods, since in addition to the reduction in the number of spatial degrees of freedom in coarse-grained Monte Carlo methods, the Langevin system of stochastic differential equations allows for multiple particle moves in a single timestep.

Keywords

Kinetic Monte Carlo methods / Diffusion / Fluctuations

Cite this article

Download citation ▾
Sasanka Are, Markos A. Katsoulakis, Anders Szepessy. Coarse-grained Langevin approximations and spatiotemporal acceleration for kinetic Monte Carlo simulations of diffusion of interacting particles. Chinese Annals of Mathematics, Series B, 2009, 30(6): 653-682 DOI:10.1007/s11401-009-0219-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abrams C. F., Kremer K.. The effect of bond length on the structure of dense bead-spring polymer melts. J. Chem. Phys., 2001, 115: 2776-2785

[2]

Allen M. P., Tildesley D. J.. Computer Simulation of Liquids, 1989, New York: Clarendon Press

[3]

Are S., Katsoulakis M. A., Plechac P.. Multi-body interactions in coarse-graining schemes of extended systems. SIAM Sci. Comput., 2008, 31(2): 987-1015

[4]

Asselah A., Giacomin G.. Metastability for the exclusion process with mean-field interaction. J. Stat. Phys., 1998, 93: 1051-1110

[5]

Chua A. L.-S., Haselwandter C. A., Baggio C.. Langevin equations for fluctuating surfaces. Phys. Rev. E, 2005, 72: 051103

[6]

Comets F.. Nucleation for a long range magnetic model. Ann. Inst. H. Poincaré, 1986, 23: 135-178

[7]

Dupuis P., Ellis R. S.. A Weak Convergence Approach to the Theory of Large Deviations, 1997, New York: John Wiley & Sons

[8]

Friedlin M. I., Wentzell A. D.. Random Perturbations of Dynamical Systems, 1998 Second Edition New York: Springer-Verlag

[9]

Gardiner C. W.. Handbook of Stochastic Methods, 1985, Berlin: Springer-Verlag

[10]

Giacomin G., Lebowitz J. L.. Phase segregration dynamics in particle systems with long range interactions, I, Macroscopic limits. J. Stat. Phys., 1997, 87: 37-61

[11]

Gillespie D. T.. The chemical Langevin equation. J. Chem. Phys., 2000, 113: 297-306

[12]

Hanggi P., Grabert H., Talkner P.. Bistable systems: master equation versus Fokker-Planck modeling. Phys. Rev. A, 1984, 3: 371-378

[13]

Hanggi P., Talkner P., Borkovec M.. Reaction-rate theory: fifty years after Kramers. Rev. Mod. Phys., 1990, 62: 251-341

[14]

Hildebrand M., Mikhailov A.. Mesoscopic modeling in the kinetic theory of adsorbates. J. Phys. Chem., 1996, 100: 19089-19101

[15]

Horntrop D. J.. Mesoscopic simulation of Ostwald ripening. J. Comput. Phys., 2006, 218: 429-441

[16]

Horntrop D. J., Katsoulakis M. A., Vlachos D. G.. Spectral methods for mesoscopic models for pattern formation. J. Comput. Phys., 2001, 173: 364-390

[17]

Katsoulakis M. A., Majda A. J., Sopasakis A.. Multiscale couplings in prototype hybrid deterministic/stochastic systems, I, Deterministic closures. Commun. Math. Sci., 2004, 2: 255-294

[18]

Katsoulakis M. A., Majda A. J., Vlachos D. G.. Coarse-grained stochastic processes and Monte Carlo simulations in lattice systems. J. Comput. Phys., 2003, 186: 250-278

[19]

Katsoulakis M. A., Plecháč P., Sopasakis A.. Error analysis of coarse-graining for stochastic lattice dynamics. SIAM J. Numer. Anal., 2006, 44: 2270-2296

[20]

Katsoulakis M. A., Rey-Bellet L., Plecháč P.. Coarse-graining schemes and a posteriori error estimates for stochastic lattice systems. Math. Modelling Numer. Anal., 2006, 41: 327-660

[21]

Katsoulakis M. A., Szepessy A.. Stochastic hydrodynamical limits of particle systems. Commun. Math. Sci., 2006, 4: 513-549

[22]

Katsoulakis M. A., Trashorras J.. Information loss in coarse-graining of stochastic particle dynamics. J. Stat. Phys., 2006, 122: 115-135

[23]

Katsoulakis M. A., Vlachos D. G.. Coarse-grained stochastic processes and kinetic Monte Carlo simulators for the diffusion of interacting particles. J. Chem. Phys., 2003, 119: 9412-9427

[24]

Kipnis C., Landim C.. Scaling Limits of Interacting Particle Systems, 1999, New York: Springer-Verlag

[25]

Kipnis C., Olla S., Varadhan S.. Hydrodynamic and large deviations for simple exclusion process. Comm. Pure Appl. Math., 1989, 42: 115-137

[26]

Landau D. P., Binder K.. A Guide to Monte Carlo Simulations in Statistical Physics, 2000, Cambridge: Cambridge University Press

[27]

Lifshitz I., Slyozov V.. The kinetics of precipitaton from supersaturated solid solutions. J. Phys. Chem. Solids, 1961, 19: 35-50

[28]

Newman M. E. J., Barkema G. T.. Monte Carlo Methods in Statistical Physics, 1999, Oxford: Oxford University Press

[29]

Pivkin I., Karniadakis G.. Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems. J. Chem. Phys., 2006, 124: 184101

[30]

Sopasakis A., Katsoulakis M. A.. Stochastic modeling and simulation of traffic flow: asymmetric single exclusion process with Arrhenius look-ahead dynamics. SIAM J. Appl. Math., 2006, 66: 921-944

[31]

Vlachos D. G., Katsoulakis M. A.. Derivation and validation of mesoscopic theories for the diffusion of interacting molecules. Phys. Rev. Lett., 2000, 85: 3898-3901

[32]

Ziff R. M., Gulari E., Barshad Y.. Kinetic phase transitions in an irreversible surface-reaction model. Phys. Rev. Lett., 1986, 56: 2553-2556

AI Summary AI Mindmap
PDF

106

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/