Generalized Tricomi problem for a quasilinear mixed type equation

Shuxing Chen

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 527 -538.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 527 -538. DOI: 10.1007/s11401-009-0215-1
Article

Generalized Tricomi problem for a quasilinear mixed type equation

Author information +
History +
PDF

Abstract

In this paper, the Tricomi problem and the generalized Tricomi problem for a quasilinear mixed type equation are studied. The coefficients of the mixed type equation are discontinuous on the line, where the equation changes its type. The existence of solution to these problems is proved. The method developed in this paper can be used to study more difficult problems for nonlinear mixed type equations arising in gas dynamics.

Keywords

Mixed type equation / Tricomi problem / Mach configuration

Cite this article

Download citation ▾
Shuxing Chen. Generalized Tricomi problem for a quasilinear mixed type equation. Chinese Annals of Mathematics, Series B, 2009, 30(5): 527-538 DOI:10.1007/s11401-009-0215-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bitsadze A. V.. Differential Equations of Mixed Type, 1964, New York: Macmillan Co.

[2]

Bitsadze, A. V., Some Classes of Partial Differential Equations, Steklov Mathematics Institute, USSR Academy of Sciences, 4, Moscow, Translated by Gordon and Breach Science Publishers, New York, 1988.

[3]

Chen S. X.. Introduction of Morden Partial Differential Equations, 2005, Beijing: Science Press

[4]

Chen S. X.. Stability of a Mach configuration. Comm. Pure Appl. Math., 2006, 59: 1-35

[5]

Chen S. X.. Mach configuration in pseudo-stationary compressible flow. J. Amer. Math. Soc., 2008, 21: 63-100

[6]

Chen, S. X., Mixed type equation in gas dynamics, to appear.

[7]

Cole J. D., Cook L. P.. Transonic Aerodynamics, 1986, Amsterdam: North-Holland

[8]

Courant R., Friedrichs K. O.. Supersonic Flow and Shock Waves, 1948, New York: Interscience Publishers Inc.

[9]

Frankl F. I.. Selected Works on Gas Dynamics, 1973, Moscow: Nauka

[10]

Grisvard P.. Elliptic Problems in Nonsmooth Domains. Monographs and Studies in Mathematics, 1985, London: Pitman

[11]

Gilbarg D., Trudinger N. S.. Elliptic Partial Differential Equation of Second Order. Grundlehren der Mathematischen Wissenschaften, 1983 Second Edition New York: Springer-Verlag

[12]

Hua L. K.. On Lavrentiev partial differential equation of the mixed type. Sci. Sinica, 1964, 13: 1755-1762

[13]

Lavrentiev M. A., Bitsadze A. V.. On problem of mixed type equations. Dokl. Akad. Nauk SSSR, 1950, 70: 373-376

[14]

Morawetz C. S.. Potential theory for regular and Mach reflection of a shock at a wedge. Comm. Pure Appl. Math., 1994, 47: 593-624

[15]

von Neumann J.. Oblique Reflection of Shocks, 1943, Washigton, D. C.: U.S. Dept. Comm. Off. of Tech. Serv.

[16]

Rassias, J. M., Mixed Type Equations, Teubner-Texte zur Mathematics, Band 90, Leipzig, 1986.

[17]

Smirnov M. M.. Equations of Mixed Type. Translations of Mathematical Monographs, 1978, Providence, RI: A. M. S.

[18]

Stein E. M.. Singular Integrals and Differentiability Properties of Functions, 1970, Princeton: Princeton University Press

[19]

Tricomi F.. Sulle equazioni lineari alle derivate parziali di secondo ordino, di tipo misto. Rend. Accad. Naz. Lincei, 1923, 14: 134-247

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/