Global attractors and determining modes for the 3D Navier-Stokes-Voight equations

Varga K. Kalantarov , Edriss S. Titi

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 697 -714.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 697 -714. DOI: 10.1007/s11401-009-0205-3
Article

Global attractors and determining modes for the 3D Navier-Stokes-Voight equations

Author information +
History +
PDF

Abstract

The authors investigate the long-term dynamics of the three-dimensional Navier-Stokes-Voight model of viscoelastic incompressible fluid. Specifically, upper bounds for the number of determining modes are derived for the 3D Navier-Stokes-Voight equations and for the dimension of a global attractor of a semigroup generated by these equations. Viewed from the numerical analysis point of view the authors consider the Navier-Stokes-Voight model as a non-viscous (inviscid) regularization of the three-dimensional Navier-Stokes equations. Furthermore, it is also shown that the weak solutions of the Navier-Stokes-Voight equations converge, in the appropriate norm, to the weak solutions of the inviscid simplified Bardina model, as the viscosity coefficient ν → 0.

Keywords

Navier-Stokes-Voight / Navier-Stokes-Voigt / Global attractor / Determining modes / Regularization of the Navier-Stokes / Turbulence models / Viscoelastic models

Cite this article

Download citation ▾
Varga K. Kalantarov, Edriss S. Titi. Global attractors and determining modes for the 3D Navier-Stokes-Voight equations. Chinese Annals of Mathematics, Series B, 2009, 30(6): 697-714 DOI:10.1007/s11401-009-0205-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Adams R. A.. Sobolev Spaces, 1975, New York: Academic Press

[2]

Babin A. V., Vishik M. I.. Attractors of Evolution Equations, 1992, Amsterdam: North-Holland

[3]

Bardina, J., Ferziger, J. H. and Reynolds, W. C., Improved subgrid scale models for large eddy simulation, 13th AIAA Fluid and Plasma Dynamics Conference, 1980, 80–1357.

[4]

Berselli L. C., Iliescu T., Layton W. J.. Mathematics of Large Eddy Simulation of Turbulent Flows. Scientific Computation, 2006, New York: Springer-Verlag

[5]

Cao Y. P., Lunasin E. M., Titi E. S.. Global well-posedness of the three dimensional viscous and inviscid simplified Bardina turbulence models. Commun. Math. Sci., 2006, 4(4): 823-848

[6]

Çelebi A. O., Kalantarov V. K., Polat M.. Attractors for the generalized Benjamin-Bona-Mahony equation. J. Diff. Eqs., 1999, 157(2): 439-451

[7]

Chueshov I. D.. Theory of functionals that uniquely determine the asymptotic dynamics of infinitedimensional dissipative systems. Russ. Math. Sur., 1998, 53(4): 731-776

[8]

Cockburn B., Jones D. A., Titi E. S.. Determining degrees of freedom for nonlinear dissipative equations. CR Acad. Sci. Paris, 1995, 321(5): 563-568

[9]

Cockburn B., Jones D. A., Titi E. S.. Estimating the number of asymptotic degrees of freedom for nonlinear dissipative systems. Math. Comp., 1997, 66: 1073-1087

[10]

Constantin P., Doering C. R., Titi E. S.. Rigorous estimates of small scales in turbulent flows. J. Math. Phys., 1996, 37: 6152-6156

[11]

Constantin P., Foias C.. Navier-Stokes Equations. Chicago Lectures in Mathematics, 1988, Chicago: University of Chicago Press

[12]

Constantin P., Foias C., Manley O. P.. Determining modes and fractal dimension of turbulent flows. J. Fluid Mech., 1985, 150: 427-440

[13]

Constantin P., Foias C., Nicolaenko B.. Integral Manifolds and Inertial Manifolds for Dissipative Partial Differential Equations. Appl. Math. Sci., 1989, New York: Springer-Verlag

[14]

Constantin P., Foias C., Temam R.. Attractors representing turbulent flows. Mem. Amer. Math. Soc., 1985, 53(314): 1-67

[15]

Foias C., Manley O., Rosa R.. Navier-Stokes Equations and Turbulence, 2001, Cambridge: Cambridge University Press

[16]

Foias C., Manley O. P., Temam R.. Asymptotic analysis of the Navier-Stokes equations. Phys. D, 1983, 9(1–2): 157-188

[17]

Foias C., Prodi G.. Sur le comportement global des solutions non-stationnaires des équations de Navier-Stokes en dimension 2. Rend. Sem. Mat. Univ. Padova, 1967, 39: 1-34

[18]

Foias C., Titi E. S.. Determining nodes, finite difference schemes and inertial manifolds. Nonlinearity, 1991, 4: 135-153

[19]

Hale J. K.. Asymptotic Behavior of Dissipative Systems. Math. Sur. Monographs, 1988, Providence, RI: A. M. S.

[20]

Holst M. J., Titi E. S.. Censor Y., Reich S.. Determining projections and functionals for weak solutions of the Navier-Stokes equations. Recent Developments in Optimization Theory and Nonlinear Analysis, 1997, Providence, RI: A. M. S. 125-138

[21]

Ilyin A. A.. Attractors for Navier-Stokes equations in domains with finite measure. Nonlinear Anal., 1996, 27: 605-616

[22]

Ilyin A. A., Titi E. S.. Sharp estimates for the number of degrees of freedom for the damped-driven 2-D Navier-Stokes equations. J. Nonlinear Sci., 2006, 16(3): 233-253

[23]

Jones D. A., Titi E. S.. Determining finite volume elements for the 2D Navier-Stokes equations. Phys. D, 1992, 60: 165-174

[24]

Jones D. A., Titi E. S.. Upper bounds on the number of determining modes, nodes, and volume elements for the Navier-Stokes equations. Indiana Univ. Math. J., 1993, 42: 875-887

[25]

Kalantarov V. K.. Attractors for some nonlinear problems of mathematical physics. Zap. Nauchn. Sem. LOMI, 1986, 152: 50-54

[26]

Kalantarov, V. K., Global behavior of solutions of nonlinear equations of mathematical physics of classical and non-classical type, Postdoctoral Thesis, St. Petersburg, 1988.

[27]

Kalantarov V. K., Levant B., Titi E. S.. Gevrey regularity of the global attractor of the 3D Navier-Stokes-Voight equations. J. Nonlinear Sci., 2009, 19: 133-152

[28]

Karazeeva N. A., Kotsiolis A. A., Oskolkov A. P.. Dynamical systems generated by initial-boundary value problems for equations of motion of linear viscoelastic fluids. Proc. Steklov Inst. Math., 1991, 3: 73-108

[29]

Khouider B., Titi E. S.. An inviscid regularization for the surface quasi-geostrophic equation. Comm. Pure Appl. Math., 2008, 61: 1331-1346

[30]

Henshaw W. D., Kreiss H. O., Yström J.. Numerical experiments on the interaction between the large and small-scale motions of the Navier-Stokes equations. Multiscale Model. Simul., 2003, 1: 119-149

[31]

Ladyzhenskaya O. A.. On the dynamical system generated by the Navier-Stokes equations. Zap. Nauchn. Sem. LOMI, 1972, 27: 91-114

[32]

Ladyzhenskaya O. A.. The Mathematical Theory of Viscous Incompressible Flow, 1963, New York: Gordon and Breach Science Publishers

[33]

Ladyzhenskaya O. A.. Attractors for Semigroups and Evolution Equations. Lezioni Lincee, 1991, Cambridge: Cambridge University Press

[34]

Ladyzhenskaya O. A., Solonnikov V. A., Uraltseva N. N.. Linear and Quasilinear Equations of Parabolic Type, 1967, Moscow: Nauka

[35]

Larios, A. and Titi, E. S., On the high-order global regularity of the three-dimensional inviscid α-regularization of various hydrodynmaic models, preprint.

[36]

Layton R., Lewandowski R.. On a well-posed turbulence model. Discrete Continuous Dyn. Sys. B, 2006, 6: 111-128

[37]

Levant, B., Ramos, F. and Titi, E. S., On the statistical properties of the 3D incompressible Navier-Stokes-Voigt model, Commun. Math. Sci., 7, 2009, in press.

[38]

Moise I., Rosa R., Wang X. M.. Attractors for non-compact semigroups via energy equations. Non-linearity, 1998, 11(5): 1369-1393

[39]

Olson E., Titi E. S.. Determining modes for continuous data assimilation in 2D turbulence. J. Stat. Phys., 2003, 113(5–6): 799-840

[40]

Olson, E. and Titi, E. S., Determining modes and Grashof number in 2D turbulence — A numerical case study, 2007, preprint.

[41]

Oskolkov A. P.. The uniqueness and solvability in the large of boundary value problems for the equations of motion of aqueous solutions of polymers. Zap. Nauchn. Sem. LOMI, 1973, 38: 98-136

[42]

Oskolkov A. P.. A certain nonstationary quasilinear system with a small parameter, that regularizes the system of Navier-Stokes equations. Problems of Mathematical Analysis, No. 4: Integral and Differential Operators. Differential Equations, 1973, St. Petersburg: St. Petersburg University 78-87

[43]

Oskolkov A. P.. On the theory of Voight fluids. Zap. Nauchn. Sem. LOMI, 1980, 96: 233-236

[44]

Ramos, F. and Titi, E. S., Invariant measures for the 3D Navier-Stokes-Voigt equations and their Navier-Stokes limit, preprint.

[45]

Robinson J.. Infinite-Dimensional Dynamical Systems. Cambridge Texts in Applied Mathematics, 2001, Cambridge: Cambridge University Press

[46]

Stanislavova M., Stefanov A., Wang B. X.. Asymptotic smoothing and attractors for the generalized Benjamin-Bona-Mahony equation on ℝ3. J. Diff. Eqs., 2005, 219(2): 451-483

[47]

Temam R.. Infinite-Dimensional Dynamical Systems in Mechanics and Physics, 1997, New York: Springer-Verlag

[48]

Temam R.. Navier-Stokes Equations: Theory and Numerical Analysis, 2001 Third Revised Edition Amsterdam: North-Holland

[49]

Wang B. X., Yang W. L.. Finite-dimensional behaviour for the Benjamin-Bona-Mahony equation. J. Phys. A, 1997, 30(13): 4877-4885

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/