On local nonreflecting boundary conditions for time dependent wave propagation

Marcus J. Grote , Imbo Sim

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 589 -606.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 589 -606. DOI: 10.1007/s11401-009-0203-5
Article

On local nonreflecting boundary conditions for time dependent wave propagation

Author information +
History +
PDF

Abstract

The simulation of wave phenomena in unbounded domains generally requires an artificial boundary to truncate the unbounded exterior and limit the computation to a finite region. At the artificial boundary a boundary condition is then needed, which allows the propagating waves to exit the computational domain without spurious reflection. In 1977, Engquist and Majda proposed the first hierarchy of absorbing boundary conditions, which allows a systematic reduction of spurious reflection without moving the artificial boundary farther away from the scatterer. Their pioneering work, which initiated an entire research area, is reviewed here from a modern perspective. Recent developments such as high-order local conditions and their extension to multiple scattering are also presented. Finally, the accuracy of high-order local conditions is demonstrated through numerical experiments.

Keywords

Absorbing boundary conditions / Scattering problems / Wave equation

Cite this article

Download citation ▾
Marcus J. Grote, Imbo Sim. On local nonreflecting boundary conditions for time dependent wave propagation. Chinese Annals of Mathematics, Series B, 2009, 30(5): 589-606 DOI:10.1007/s11401-009-0203-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Givoli D.. Numerical Methods for Problems in Infinite Domains, Studies in Applied Mechanics, 1992, Amsterdam: Elsevier

[2]

Smith W. D.. Nonreflecting plane boundary for wave propagation problems. J. Comput. Phys., 1974, 15: 492-503

[3]

Engquist B., Majda A.. Absorbing boundary conditions for the numerical simulation of waves. Math. Comput., 1977, 31: 629-651

[4]

Engquist B., Majda A.. Absorbing boundary conditions for numerical simulation of waves. Proc. Natl. Acad. Sci. USA, 1977, 74: 1765-1766

[5]

Bérenger J.-P.. A perfectly matched layer for the absorbtion of electromagnetic waves. J. Comput. Phys., 1994, 114: 185-200

[6]

Ergin A. A., Shanker B., Michielssen E.. Fast evaluation of three-dimensional transient wave fields using diagonal translation operators. J. Comput. Phys., 1998, 146: 157-180

[7]

Grote M. J., Keller J. B.. Exact nonreflecting boundary conditions for the time dependent wave equation. SIAM J. Appl. Math., 1995, 55: 280-297

[8]

Grote M. J., Keller J. B.. Nonreflecting boundary conditions for time-dependent scattering. J. Comput. Phys., 1996, 127: 52-65

[9]

Hagstrom T., Hariharan S. I.. A formulation of asymptotic and exact boundary conditions using local operators. Appl. Numer. Math., 1998, 27: 403-416

[10]

Hagstrom T., Warburton T.. A new auxiliary variable formulation of high-order local radiation conditions: corner compatibility conditions and extensions to first-order systems. Wave Motion, 2004, 39: 327-338

[11]

Grote M. J.. Local nonreflecting boudnary condition for Maxwell’s equations. Comp. Methods Appl. Mech. Eng., 2006, 195: 3691-3708

[12]

Hagstrom T.. Radiation boundary conditions for the numerical simulation of waves. Acta Numer., 1999, 8: 47-106

[13]

Tsynkov S. V.. Numerical solution of problems on unbounded domains: a review. Appl. Numer. Math., 1998, 27: 465-532

[14]

Givoli D.. High-order local non-reflecting boundary conditions: a review. Wave Motion, 2004, 39: 319-326

[15]

Higdon R. L.. Numerical absorbing boundary conditions for the wave equation. Math. Comput., 1987, 49: 65-90

[16]

Grote M. J., Keller J. B.. Nonreflecting boundary conditions for Maxwell’s equations. J. Comput. Phys., 1998, 139: 327-342

[17]

Bayliss A., Turkel E.. Radiation boundary conditions for wave-like equations. Comm. Pure Appl. Math., 1980, 33: 707-725

[18]

Grote M. J., Kirsch C.. Nonreflecting boundary condition for time-dependent multiple scattering. J. Comput. Phys., 2007, 221: 41-62

[19]

Grote, M. J. and Sim, I., Local nonreflecting boundary conditions for time-dependent multiple scattering, in preparation.

AI Summary AI Mindmap
PDF

139

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/