PDF
Abstract
Amplitude equations governing the nonlinear resonant interaction of equatorial baroclinic and barotropic Rossby waves were derived by Majda and Biello and used as a model for long range interactions (teleconnections) between the tropical and midlatitude troposphere. An overview of that derivation is presented and geared to readers versed in nonlinear wave theory, but not in atmospheric sciences. In the course of the derivation, two other sets of asymptotic equations are presented: the long equatorial wave equations and the weakly nonlinear, long equatorial wave equations. A linear transformation recasts the amplitude equations as nonlinear and linearly coupled KdV equations governing the amplitude of two types of modes, each of which consists of a coupled tropical/midlatitude flow. In the limit of Rossby waves with equal dispersion, the transformed amplitude equations become two KdV equations coupled only through nonlinear fluxes. Four numerical integrations are presented which show (i) the interaction of two solitons, one from either mode, (ii) and (iii) the interaction of a soliton in the presence of different mean wind shears, and (iv) the interaction of two solitons mediated by the presence of a mean wind shear.
Keywords
Coupled KdV equations
/
Equatorial Rossby waves
/
Solitary waves
/
Atmospheric teleconnections
Cite this article
Download citation ▾
Joseph A. Biello.
Nonlinearly coupled KdV equations describing the interaction of equatorial and midlatitude Rossby waves.
Chinese Annals of Mathematics, Series B, 2009, 30(5): 483-504 DOI:10.1007/s11401-009-0200-8
| [1] |
Biello J. A., Majda A. J.. Boundary layer dissipation and the nonlinear interaction of equatorial baroclinic and barotropic Rossby waves. Geophys. Astrophys. Fluid Dyn., 2004, 98(2): 85-127
|
| [2] |
Biello J. A., Majda A. J.. The effect of meridional and vertical shear on the interaction of equatorial baroclinic and barotropic Rossby waves. Stud. Appl. Math., 2004, 112(4): 341-390
|
| [3] |
Biello J. A., Majda A. J.. A new multiscale model for the Madden-Julian oscillation. J. Atmos. Sci., 2005, 62(6): 1694-1721
|
| [4] |
Biello J. A., Majda A. J.. Modulating synoptic scale convective activity and boundary layer dissipation in the IPESD models of the Madden-Julian oscillation. Dyn. Atmos. Oceans, 2006, 42(1–4): 152-215
|
| [5] |
Biello J. A., Majda A. J.. Transformations for temperature flux in multiscale models of the tropics. Theor. Comput. Fluid Dyn., 2006, 20(5–6): 405-420
|
| [6] |
Gill A. E.. Some simple solutions for heat-induced tropical circulations. Quart. J. Roy. Meteor. Soc., 1980, 106(449): 447-462
|
| [7] |
Gottwald G., Grimshaw R.. The formation of coherent structures in the context of blocking. J. Atmos. Sci., 1999, 56(21): 3640-3662
|
| [8] |
Hoskins B. J., Jin F.-F.. The initial value problem for tropical perturbations to a baroclinic atmosphere. Quart. J. Royal. Meteor. Soc., 1991, 117(498): 299-317
|
| [9] |
Hoskins B. J., Yang G.-Y.. The equatorial response to higher-latitude forcing. J. Atmos. Sci., 2000, 57(9): 1197-1213
|
| [10] |
Kasahara A., Silva Dias P. L. d.. Response of planetary waves to stationary tropical heating in a global atmosphere with meridional and vertical shear. J. Atmos. Sci., 1986, 43(18): 1893-1912
|
| [11] |
Khouider B., Majda A. J.. A simple multicloud parameterization for convectively coupled tropical waves, Part I: linear analysis. J. Atmos. Sci., 2006, 63(4): 1308-1323
|
| [12] |
Khouider B., Majda A. J.. Multicloud convective parametrizations with crude vertical structure. Theor. Comput. Fluid Dyn., 2006, 20(5–6): 351-375
|
| [13] |
Kiladis G. N., Wheeler M.. Horizontal and vertical structure of observed tropospheric equatorial Rossby waves. J. Geophys. Res., 1995, 100(D11): 22981-22997
|
| [14] |
Kim B.-M., Lim G.-H., Kim K.-Y.. A new look at the midlatitude-MJO teleconnection in the northern hemisphere winter. Quart. J. Roy. Meteor. Soc., 2006, 132(615): 485-503
|
| [15] |
Lim H., Chang C.-P.. A theory for midlatitude forcing of tropical motions during winter monsoons. J. Atmos. Sci., 1981, 38(11): 2377-2392
|
| [16] |
Lim H., Chang C.-P.. Generation of internal- and external-mode motions from internal heating: effects of vertical shear and damping. J. Atmos. Sci., 1986, 43(9): 948-960
|
| [17] |
Lin J. W.-B., Neelin J. D., Zeng N.. Maintenance of tropical intraseasonal variability: impact of evaporation-wind feedback and midlatitude storms. J. Atmos. Sci., 2000, 57(17): 2793-2823
|
| [18] |
Majda A. J.. Introduction to PDEs and Waves for the Atmosphere and Ocean, 2003, Providence, RI: AMS
|
| [19] |
Majda A. J., Biello J. A.. The nonlinear interaction of barotropic and equatorial baroclinic Rossby waves. J. Atmos. Sci., 2003, 60(15): 1809-1821
|
| [20] |
Majda A. J., Biello J. A.. A multiscale model for tropical intraseasonal oscillations. Proc. Natl. Acad. Sci., 2004, 101(14): 4736-4741
|
| [21] |
Majda A. J., Klein R.. Systematic multiscale models for the tropics. J. Atmos. Sci., 2003, 60(2): 393-408
|
| [22] |
Majda A. J., Rosales R. R., Tabak E. G.. Interaction of large-scale equatorial waves and dispersion of Kelvin waves through topographic resonances. J. Atmos. Sci., 1999, 56(24): 4118-4133
|
| [23] |
Mitsudera H.. Eady solitary waves: a theory of type B cyclogenesis. J. Atmos. Sci., 1994, 51(21): 3137-3154
|
| [24] |
Matsuno T.. Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 1966, 44(1): 25-43
|
| [25] |
Wang B., Xie X. S.. Low-frequency equatorial waves in vertically sheared zonal flow, Part 1: stable waves. J. Atmos. Sci., 1996, 53(3): 449-467
|
| [26] |
Webster P. J.. Response of tropical atmosphere to local, steady forcing. Mon. Wea. Rev., 1972, 100(7): 518-541
|
| [27] |
Webster P. J.. Mechanisms determining the atmospheric response to sea surface temperature anomalies. J. Atmos. Sci., 1981, 38(3): 554-571
|
| [28] |
Wheeler M., Kiladis G. N.. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 1999, 56(3): 374-399
|