Gradient estimates for the heat kernels in higher dimensional Heisenberg groups
Bin Qian
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 305 -314.
Gradient estimates for the heat kernels in higher dimensional Heisenberg groups
The author obtains sharp gradient estimates for the heat kernels in two kinds of higher dimensional Heisenberg groups — the non-isotropic Heisenberg group and the Heisenberg type group ℍ n,m. The method used here relies on the positive property of the Bakry-Émery curvature Γ2 on the radial functions and some associated semigroup technics.
Gradient estimates / Γ2 curvature / Heat kernels / Sublaplace / Heisenberg group
| [1] |
|
| [2] |
|
| [3] |
Bakry, D., Baudoin, F., Bonnefont, M., et al, Subelliptic Li-Yau estimates on three dimensional model spaces, Potential Theory and Stochastics in Albac, Theta Series in Advanced Mathematics, 2009. |
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
Li, H.-Q., Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg, J. Reine Angew. Math., in press, 2010. |
| [16] |
|
| [17] |
|
| [18] |
|
/
| 〈 |
|
〉 |