Gradient estimates for the heat kernels in higher dimensional Heisenberg groups

Bin Qian

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 305 -314.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 305 -314. DOI: 10.1007/s11401-009-0198-y
Article

Gradient estimates for the heat kernels in higher dimensional Heisenberg groups

Author information +
History +
PDF

Abstract

The author obtains sharp gradient estimates for the heat kernels in two kinds of higher dimensional Heisenberg groups — the non-isotropic Heisenberg group and the Heisenberg type group ℍ n,m. The method used here relies on the positive property of the Bakry-Émery curvature Γ2 on the radial functions and some associated semigroup technics.

Keywords

Gradient estimates / Γ2 curvature / Heat kernels / Sublaplace / Heisenberg group

Cite this article

Download citation ▾
Bin Qian. Gradient estimates for the heat kernels in higher dimensional Heisenberg groups. Chinese Annals of Mathematics, Series B, 2010, 31(3): 305-314 DOI:10.1007/s11401-009-0198-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bakry D.. On Sobolev and logarithmic Sobolev inequalities for Markov semigroups, New Trends in Stochastic Analysis, Charingworth, 1994, 1997, River Edge: World Scientific Publishing 43-75

[2]

Bakry D., Baudoin F., Bonnefont M. On gradient bounds for the heat kernel on the Heisenberg group. J. Funct. Anal., 2008, 255: 1905-1938

[3]

Bakry, D., Baudoin, F., Bonnefont, M., et al, Subelliptic Li-Yau estimates on three dimensional model spaces, Potential Theory and Stochastics in Albac, Theta Series in Advanced Mathematics, 2009.

[4]

Baudoin F., Bonnefont M.. The subelliptic heat kernel on SU(2): representations, asymptotics and gradient bounds. Math. Z., 2009, 263(3): 647-672

[5]

Beals R., Gaveau B., Greiner P. C.. Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. (9), 2000, 79(7): 633-689

[6]

Bonfiglioli A., Uguzzoni F.. Nonlinear Liouville theorems for some critical problems on H-type groups. J. Funct. Anal., 2004, 207(1): 161-215

[7]

Davies E. B.. Heat Kernels and Spectral Theory, Cambridge Tracts in Mathematics, Vol. 92, 1989, New York: Cambridge University Press

[8]

Engoulatov A.. A universal bound on the gradient of logtithm of the heat kernel for manifolds with bounded Ricci curvature. J. Funct. Anal., 2006, 238: 518-529

[9]

Gaveau B.. Principe de moindre action, propagation de la chaleur et estimees sous elliptiques sur certains groupes nilpotents. Acta Math., 1977, 139: 95-153

[10]

Kaplan A.. Fundamental solutions for a class of hypoelliptic PDE generated by composition of quadratic forms. Trans. Amer. Math. Soc., 1980, 258: 147-153

[11]

Juillet N.. Geometric inequalities and generalized Ricci bounds on the Heisenberg group. Int. Math. Res. Not., 2009, 2009: 2347-2373

[12]

Ledoux M.. The geometry of Markov diffusion generators. Ann. Fac. Sci. Toulouse Math. (6), 2000, 9(2): 305-366

[13]

Li H.-Q.. Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. J. Funct. Anal., 2006, 236(2): 369-394

[14]

Li H.-Q.. Esimations asymptotiques du noyau de la chaleur sur les groupes de Heisenberg. C. R. Math. Acad. Sci. Paris, 2007, 344: 497-502

[15]

Li, H.-Q., Estimations optimales du noyau de la chaleur sur les groupes de type Heisenberg, J. Reine Angew. Math., in press, 2010.

[16]

Li P., Yau S. T.. On the parabolic kernel of the Schrödinger operator. Acta. Math., 1986, 156: 153-201

[17]

Randall J.. The heat kernel for generalized Heisenberg groups. J. Geom. Anal., 1996, 6: 287-316

[18]

Varopolous N. Th., Saloff-Coste L., Coulhon T.. Analysis and Geometry on Groups, Cambridge Tracts in Mathematics, Vol. 100, 1992, Cambridge: Cambridge University Press

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/