On the hydrostatic and Darcy limits of the convective Navier-Stokes equations

Yann Brenier

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 683 -696.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 683 -696. DOI: 10.1007/s11401-009-0197-z
Article

On the hydrostatic and Darcy limits of the convective Navier-Stokes equations

Author information +
History +
PDF

Abstract

The author studies two singular limits of the convective Navier-Stokes equations. The hydrostatic limit is first studied: the author shows the existence of global solutions with a convex pressure field and derives them from the convective Navier-Stokes equations as long as the pressure field is smooth and strongly convex. The (friction dominated) Darcy limit is also considered, and a relaxed version is studied.

Keywords

Atmospheric sciences / Fluid mechanics / Asymptotic analysis

Cite this article

Download citation ▾
Yann Brenier. On the hydrostatic and Darcy limits of the convective Navier-Stokes equations. Chinese Annals of Mathematics, Series B, 2009, 30(6): 683-696 DOI:10.1007/s11401-009-0197-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Angenent S., Haker S., Tannenbaum A.. Minimizing flows for the Monge-Kantorovich problem. SIAM J. Math. Anal., 2003, 35: 61-97

[2]

Brenier Y.. Polar factorization and monotone rearrangement of vector-valued functions. Comm. Pure Appl. Math., 1991, 44: 375-417

[3]

Brenier Y.. Remarks on the derivation of the hydrostatic Euler equations. Bull. Sci. Math., 2003, 127: 585-595

[4]

Brenier, Y., Optimal transport, convection, magnetic relaxation and generalized Boussinesq equations, J. Nonlinear Sci., to appear.

[5]

Brenier, Y., L2 formulation of multidimensional scalar conservation laws, Arch. Rational Mech. Anal., to appear. arXiv:math/0609761v1

[6]

Brenier, Y. and Cullen, M., Rigorous derivation of the x-z semigeostrophic equations, CMS, to appear.

[7]

Caffarelli L. A.. Boundary regularity of maps with convex potentials. Comm. Pure Appl. Math., 1992, 45: 1141-1151

[8]

Chae D.. Global regularity for the 2D Boussinesq equations with partial viscosity terms. Adv. Math., 2006, 203: 497-513

[9]

Constantin P., Lax P. D., Majda A.. A simple one-dimensional model for the three-dimensional vorticity equation. Comm. Pure Appl. Math., 1985, 38: 715-724

[10]

Dafermos C. M.. Hyperbolic Conservation Laws in Continuum Physics. Grundlehren der Mathematischen Wissenschaften, 2000, Berlin: Springer-Verlag

[11]

DiPerna R. J., Lions P. L.. Ordinary differential equations, transport theory and Sobolev spaces. Invent. Math., 1989, 98: 511-547

[12]

Fritz J., Tóth B.. Derivation of the Leroux system as the hydrodynamic limit of a two-component lattice gas. Commun. Math. Phys., 2004, 249: 1-27

[13]

Hou T. Y., Li C. M.. Global well-posedness of the viscous Boussinesq equations. Discrete Contin. Dyn. Sys., 2005, 12: 1-12

[14]

James F., Peng Y.-J., Perthame B.. Kinetic formulation for chromatography and some other hyperbolic systems. J. Math. Pures Appl., 1995, 74: 367-385

[15]

Lieb E., Loss M.. Analysis. Graduate Studies in Mathematics, 2001, Providence, RI: A. M. S.

[16]

Majda A.. Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. Applied Mathematical Sciences, 1984, New York: Springer-Verlag

[17]

Majda A.. Introduction to PDEs and Waves for the Atmosphere and Ocean. Courant Lecture Notes, 2003, Providence, RI: A. M. S.

[18]

Majda A. J., Wang X. M.. Non-linear Dynamics and Statistical Theories for Basic Geophysical Flows, 2006, Cambridge: Cambridge University Press

[19]

Pedlosky J.. Geophysical Fluid Dynamics, 1979, New York: Springer-Verlag

[20]

Serre D.. Systems of Conservation Laws, 2000, Cambridge: Cambridge University Press

[21]

Villani C.. Topics in Optimal Transportation. Graduate Studies in Mathematics, 2003, Providence, RI: A. M. S.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/