Homogenization theory for a replenishing passive scalar field

Peter R. Kramer , Shane R. Keating

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 631 -644.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 631 -644. DOI: 10.1007/s11401-009-0196-0
Article

Homogenization theory for a replenishing passive scalar field

Author information +
History +
PDF

Abstract

Homogenization theory provides a rigorous framework for calculating the effective diffusivity of a decaying passive scalar field in a turbulent or complex flow. The authors extend this framework to the case where the passive scalar fluctuations are continuously replenished by a source (and/or sink). The basic structure of the homogenized equations carries over, but in some cases the homogenized source can involve a non-trivial coupling of the velocity field and the source. The authors derive expressions for the homogenized source term for various multiscale source structures and interpret them physically.

Keywords

Homogenization / Turbulent transport / Source / Pumping

Cite this article

Download citation ▾
Peter R. Kramer, Shane R. Keating. Homogenization theory for a replenishing passive scalar field. Chinese Annals of Mathematics, Series B, 2009, 30(5): 631-644 DOI:10.1007/s11401-009-0196-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ottino J. M.. Mixing, chaotic advection, and turbulence. Ann. Rev. Fluid Mech., 1990, 22: 207-254

[2]

Majda A. J., Kramer P. R.. Simplified models for turbulent diffusion: theory, numerical modelling, and physical phenomena. Phys. Rep., 1999, 314(4–5): 237-574

[3]

Papanicolaou, G. C. and Varadhan, S. R. S., Boundary value problems with rapidly oscillating random coefficients, Random Fields: Rigorous Results in Statistical Mechanics and Quantum Field Theory, Colloquia Mathematica Societatis János Bolyai, 2, J. Fritz, J. L. Lebowitz and D. Szasz (eds.), North-Holland, Amsterdam, 1979, 835–873.

[4]

Cioranescu D., Donato P.. An Introduction to Homogenization, 1999, New York: Oxford University Press

[5]

Bensoussan, A., Lions, J. L. and Papanicolaou, G., Asymptotic Analysis for Periodic Structures, Studies in Mathematics and Its Applications, 5, North-Holland, Amsterdam, 1978.

[6]

Jikov V. V., Kozlov S. M., Oleinik O. A.. Homogenization of Differential Operators and Integral Functionals, 1994, Berlin: Springer-Verlag 55-85

[7]

Avellaneda M., Vergassola M.. Stieltjes integral representation of effective diffusivities in timedependent flows. Phys. Rev. E, 1995, 52(3): 3249-3251

[8]

Avellaneda M., Majda A. J.. Stieltjes integral representation and effective diffusivity bounds for turbulent transport. Phys. Rev. Lett., 1989, 62(7): 753-755

[9]

Fannjiang A., Papanicolaou G.. Diffusion in turbulence. Prob. Th. Rel. Fields, 1996, 105(3): 279-334

[10]

Oelschläger K.. Homogenization of a diffusion process in a divergence-free random field. Ann. Probab., 1988, 16(3): 1084-1126

[11]

Olla S.. Homogenization of Diffusion Processes in Random Fields. Lecture Notes at Ecole Polytechnique, 1994, Paris: Ecole Polytechnique

[12]

Plasting S. C., Young W. R.. A bound on scalar variance for the advection-diffusion equation. J. Fluid Mech., 2006, 552: 289-298

[13]

Abraham E. R., Bowen M. M.. Chaotic stirring by a mesoscale surfaceocean flow. Chaos, 2002, 12(2): 373-381

[14]

Martin A. P.. Phytoplankton patchiness: the role of lateral stirring and mixing. Prog. Oceanogr., 2003, 57: 125-174

[15]

Shaw T. A., Thiffeault J.-L., Doering C. R.. Stirring up trouble: multi-scale mixing measures for steady scalar sources. Phys. D, 2007, 231(2): 143-164

[16]

Avellaneda M., Majda A. J.. An integral representation and bounds on the effective diffusivity in passive advection by laminar and turbulent flows. Comm. Math. Phys., 1991, 138: 339-391

[17]

Lin, Z., Bod’ová, K. and Doering, C. R., Measures of mixing and effective diffusion scalings, 2009, preprint.

[18]

Koch D. L., Brady J. F.. The symmetry properties of the effective diffusivity tensor in anisotropic porous media. Phys. Fluids, 1987, 30(3): 642-650

[19]

Middleton J. F., Loder J. W.. Skew fluxes in polarized wave fields. J. Phys. Oceanogr., 1989, 19: 68-76

[20]

Moffatt H. K.. Transport effects associated with turbulence with particular attention to the influence of helicity. Rep. Prog. Phys., 1983, 46: 621-664

[21]

Griffies S. M.. The Gent-McWilliams skew flux. J. Phys. Oceanogr., 1998, 28: 831-841

[22]

Gent P. R., Willebrand J., McDougall T. J.. Parameterizing eddy-induced tracer transports in ocean circulation models. J. Phys. Oceanogr., 1995, 25: 463-474

[23]

Canuto V. M.. The physics of subgrid scales in numerical simulations of stellar convection: are they dissipative, advective, or diffusive?. Astrophys. J. Lett., 2000, 541: L79-L82

[24]

Keating, S. R. and Kramer, P. R., A homogenization perspective on mixing efficiency measures, 2009, preprint.

[25]

Lin C. C., Segel L. A.. Handelman G. H., O’Malley R. E. Jr. Mathematics Applied to Deterministic Problems in the Natural Sciences. With material on elasticity, 1988, Philadelphia: SIAM

[26]

Folland G. B.. Introduction to Partial Differential Equations, 1995 Second Edition Princeton: Princeton University Press

[27]

Goudon T., Poupaud F.. Homogenization of transport equations: weak mean field approximation. SIAM J. Math. Anal., 2005, 36(3): 856-881

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/