The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels

Andrea L. Bertozzi , Thomas Laurent

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 463 -482.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 463 -482. DOI: 10.1007/s11401-009-0191-5
Article

The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels

Author information +
History +
PDF

Abstract

The authors consider the multidimensional aggregation equation t ρ-div(ρK* ρ) = 0 in which the radially symmetric attractive interaction kernel has a mild singularity at the origin (Lipschitz or better), and review recent results on this problem concerning well-posedness of nonnegative solutions and finite time blowup in multiple space dimensions depending on the behavior of the kernel at the origin. The problem with bounded initial data, data in L pL 1, and measure solutions are also considered.

Keywords

Well-posedness / Blowup / Osgood condition

Cite this article

Download citation ▾
Andrea L. Bertozzi, Thomas Laurent. The behavior of solutions of multidimensional aggregation equations with mildly singular interaction kernels. Chinese Annals of Mathematics, Series B, 2009, 30(5): 463-482 DOI:10.1007/s11401-009-0191-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Agueh M.. Existence of solutions to degenerate parabolic equations via the Monge-Kantorovich theory. Adv. Diff. Eqs., 2005, 10(3): 309-360

[2]

Ambrosio L., Bernard P.. Uniqueness of signed measures solving the continuity equation for Osgood vector fields. Rend. Lincei-Math. Appl., 2008, 19(3): 237-245

[3]

Ambrosio L. A., Gigli N., Savaré G.. Gradient Flows: in Metric Spaces and in the Space of Probability Measures, 2005, Boston: Birkhäuser

[4]

Agarwal R. P., Lakshmikantham V.. Uniqueness and Nonuniqueness Criteria for Ordinary Differential Equations, 1993, New York: World Scientific

[5]

Barenblatt G. I.. Scaling, Self-similarity, and Intermediate Asymptotics, 1996, Cambridge: Cambridge University Press

[6]

Benedetto D., Caglioti E., Pulvirenti M.. A kinetic equation for granular media. RAIRO Modél. Math. Anal. Numér., 1997, 31(5): 615-641

[7]

Bertozzi, A. L. and Brandman, J., Finite-time blow-up of L -weak solutions of an aggregation equation, Comm. Math. Sci., to appear.

[8]

Bertozzi A. L., Carrillo J. A., Laurent T.. Blow-up in multidimensional aggregation equations with mildly singular interaction kernels. Nonlinearity, 2009, 22(3): 683-710

[9]

Bertozzi A. L., Laurent T.. Finite-time blow-up of solutions of an aggregation equation in ℝn. Comm. Math. Phys., 2007, 274(3): 717-735

[10]

Bertozzi, A. L., Laurent, T. and Rosado, J., L p theory for the aggregation equation, 2009, manuscript.

[11]

Biler P., Woyczyński A.. Global and expoding solutions for nonlocal quadratic evolution problems. SIAM J. Appl. Math., 1998, 59(3): 845-869

[12]

Blanchet A., Carrillo J. A., Masmoudi N.. Infinite time aggregation for the critical Patlak-Keller-Segel model in ℝ2. Comm. Pure Appl. Math., 2008, 61(10): 1449-1481

[13]

Blanchet A., Dolbeault J., Perthame B.. Two-dimensional Keller-Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Diff. Eqs., 2006, 2006(44): 1-33

[14]

Bodnar M., Velázquez J. J. L.. An integro-differential equation arising as a limit of individual cell-based models. J. Diff. Eqs., 2006, 222(2): 341-380

[15]

Boi S., Capasso V., Morale D.. Modeling the aggregative behavior of ants of the species Polyergus rufescens. Nonlinear Anal.: Real World Appl., 2000, 1(1): 163-176

[16]

Brenner M. P., Constantin P., Kadanoff L. P. Diffusion, attraction and collapse. Nonlinearity, 1999, 12(4): 1071-1098

[17]

Brenner M. P., Witelski T. P.. On spherically symmetric gravitational collapse. J. Stat. Phys., 1998, 93(3–4): 863-899

[18]

Burger M., Capasso V., Morale D.. On an aggregation model with long and short range interactions. Nonlinear Anal.: Real World Appl., 2007, 8(3): 939-958

[19]

Burger M., Francesco M. D.. Large time behavior of nonlocal aggregation models with nonlinear diffusion. Networks and Heterogenous Media, 2008, 3(4): 749-785

[20]

Carrillo, J. A., Francesco, M. D., Figalli, A., et al, Global-in-time weak measure solutions, finite-time aggregation and confinement for nonlocal interaction equations, 2009, preprint.

[21]

Carrillo J. A., McCann R. J., Villani C.. Kinetic equilibration rates for granular media and related equations: entropy dissipation and mass transportation estimates. Rev. Mat. Iberoamericana, 2003, 19(3): 971-1018

[22]

Carrillo J. A., McCann R. J., Villani C.. Contractions in the 2-Wasserstein length space and thermalization of granular media. Arch. Rational Mech. Anal., 2006, 179(2): 217-263

[23]

Carrillo, J. A. and Rosado, J., Uniqueness of bounded solutions to aggregation equations by optimal transport methods, preprint.

[24]

Chuang, Y. L., Huang, Y. R., D’Orsogna, M. R., et al, Multi-vehicle flocking: scalability of cooperative control algorithms using pairwise potentials, IEEE Int. Conf. Rob. Aut., 2007, 2292–2299.

[25]

Constantin P., Majda A., Tabak E.. Formation of strong fronts in the 2D quasi-geostrophic thermal active scalar. Nonlinearity, 1994, 7(6): 1495-1533

[26]

Dolbeault J., Perthame B.. Optimal critical mass in the two-dimensional Keller-Segel model in ℝ2. C. R. Math. Acad. Sci. Paris, 2004, 339: 611-616

[27]

Du Q., Zhang P.. Existence of weak solutions to some vortex density models. SIAM J. Math. Anal., 2003, 34(6): 1279-1299

[28]

Gazi V., Passino K.. Stability analysis of swarms. IEEE Trans. Auto. Control, 2003, 48: 692-697

[29]

Holm D., Putkaradze V.. Formation of clumps and patches in self-aggregation of finite-size particles. Phys. D, 2006, 220(2): 183-196

[30]

Holm D., Putkaradze V.. Aggregation of finite size particles with variable mobility. Phys. Rev. Lett., 2005, 95(22): 226106

[31]

Huang, Y. and Bertozzi, A. L., Self-similar blowup solutions to an aggregation equation, 2009, preprint.

[32]

Jordan R., Kinderlehrer D., Otto F.. The variational formulation of the Fokker-Planck equation. SIAM J. Math. Anal., 1998, 29(1): 1-17

[33]

Keller E. F., Segel L. A.. Initiation of slide mold aggregation viewed as an instability. J. Theor. Biol., 1970, 26(3): 399-415

[34]

Laurent T.. Local and global existence for an aggregation equation. Comm. PDEs, 2007, 32(12): 1941-1964

[35]

Li D., Rodrigo J.. Finite-time singularities of an aggregation equation in ℝn with fractional dissipation. Comm. Math. Phys., 2009, 287(2): 687-703

[36]

Li D., Rodrigo J.. Refined blowup criteria and nonsymmetric blowup of an aggregation equation. Adv. Math., 2009, 220(1): 1717-1738

[37]

Li, D. and Zhang, X. Y., On a nonlocal aggregation model with nonlinear diffusion. arXiv:0902.2017v1

[38]

Li H. L., Toscani G.. Long-time asymptotics of kinetic models of granular flows. Arch. Rational Mech. Anal., 2004, 172(3): 407-428

[39]

Loeper G.. Uniqueness of the solution to the Vlasov-Poisson system with bounded density. J. Math. Pures Appl., 2006, 86: 68-79

[40]

Majda A., Bertozzi A. L.. Vorticity and Incompressible Flow, Cambridge Texts in Applied Mathematics, 2002, Cambridge: Cambridge University Press

[41]

McCann R. J.. A convexity principle for interacting gases. Adv. Math., 1997, 128(1): 153-179

[42]

Mogilner A., Edelstein-Keshet L.. A non-local model for a swarm. J. Math. Biol., 1999, 38(6): 534-570

[43]

Morale D., Capasso V., Oelschläger K.. An interacting particle system modelling aggregation behavior: from individuals to populations. J. Math. Biol., 2005, 50: 49-66

[44]

Okubo A., Levin S. A.. Diffusion and Ecological Problems: Modern Perspectives, 2001, Berlin: Springer-Verlag

[45]

Otto F.. The geometry of dissipative evolution equations: the porous medium equation. Comm. PDEs, 2001, 26(1): 101-174

[46]

Patlak C. S.. Random walk with persistence and external bias. Bull. Math. Biophys., 1953, 15(3): 311-338

[47]

Topaz C. M., Bertozzi A. L.. Swarming patterns in a two-dimensional kinematic model for biological groups. SIAM J. Appl. Math., 2004, 65(1): 152-174

[48]

Topaz C. M., Bertozzi A. L., Lewis M. A.. A nonlocal continuum model for biological aggregation. Bull. Math. Biol., 2006, 68(7): 1601-1623

[49]

Toscani G.. One-dimensional kinetic models of granular flows. RAIRO Modél. Math. Anal. Numér., 2000, 34(6): 1277-1291

[50]

Villani C.. Topics in Optimal Transportation, Graduate Studies in Mathematics, 58, 2003, Providence: AMS

[51]

Villani C.. Optimal Transport: Old and New, 2008, Berlin: Springer-Verlag

[52]

Yudovich V. I.. Non-stationary flow of an ideal incompressible liquid. Zh. Vychisl. Mat. Mat. Fiz., 1963, 3: 1032-1066

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/