Approximating stationary statistical properties

Xiaoming Wang

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 831 -844.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 831 -844. DOI: 10.1007/s11401-009-0178-2
Article

Approximating stationary statistical properties

Author information +
History +
PDF

Abstract

It is well-known that physical laws for large chaotic dynamical systems are revealed statistically. Many times these statistical properties of the system must be approximated numerically. The main contribution of this manuscript is to provide simple and natural criterions on numerical methods (temporal and spatial discretization) that are able to capture the stationary statistical properties of the underlying dissipative chaotic dynamical systems asymptotically. The result on temporal approximation is a recent finding of the author, and the result on spatial approximation is a new one. Applications to the infinite Prandtl number model for convection and the barotropic quasi-geostrophic model are also discussed.

Keywords

Stationary statistical property / Invariant measure / Global attractor / Dissipative system / Time discretization / Spatial discretisation / Uniformly dissipative scheme / Infinite Prandtl number model for convection / Barotropic quasi-geostrophic equations

Cite this article

Download citation ▾
Xiaoming Wang. Approximating stationary statistical properties. Chinese Annals of Mathematics, Series B, 2009, 30(6): 831-844 DOI:10.1007/s11401-009-0178-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Billingsley P.. Weak Convergence of Measures: Applications in Probability, 1971, Philadelphia: SIAM

[2]

Bohr T., Jensen M. J., Paladin G. Dynamical Systems Approach to Turbulence, 1998, Cambridge: Cambridge University Press

[3]

Chandrasekhar S.. Hydrodynamic and Hydromagnetic Stability, 1961, Oxford: Clarendon Press

[4]

Cheng W. F., Wang X. M.. A uniformly dissipative scheme for stationary statistical properties of the infinite Prandtl number model. Appl. Math. Lett., 2008, 21(12): 1281-1285

[5]

Cheng W. F., Wang X. M.. A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model. SIAM J. Numer. Anal., 2008, 47(1): 250-270

[6]

Constantin P., Doering C. R.. Infinite Prandtl number convection. J. Stat. Phys., 1999, 94(1–2): 159-172

[7]

Doering C. R., Otto F., Reznikoff M. G.. Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Bénard convection. J. Fluid Mech., 2006, 560: 229-241

[8]

Foias C., Jolly M., Kevrekidis I. G. Dissipativity of numerical schemes. Nonlinearity, 1991, 4(3): 591-613

[9]

Foias C., Jolly M., Kevrekidis I. G. On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation. Phys. Lett. A, 1994, 186(1–2): 87-96

[10]

Foias C., Manley O., Rosa R. Navier-Stokes Equations and Turbulence, Encyclopedia of Mathematics and Its Applications, 83, 2001, Cambridge: Cambridge University Press

[11]

Frisch U.. Turbulence: the Legacy of A. N. Kolmogorov, 1995, Cambridge: Cambridge University Press

[12]

Geveci T.. On the convergence of a time discretization scheme for the Navier-Stokes equations. Math. Comput., 1989, 53(187): 43-53

[13]

Hale J. K.. Asymptotic Behavior of Dissipative Systems. Math. Surveys and Monographs, Vol. 25, 1988, Providence, RI: A. M. S.

[14]

Heywood J. G., Rannacher R.. Finite element approximation of the nonstationary Navier-Stokes problem, part II: stability of solutions and error estimates uniform in time. SIAM J. Numer. Anal., 1986, 23(4): 750-777

[15]

Hill A. T., Süli E.. Approximation of the global attractor for the incompressible Navier-Stokes equations. IMA J. Numer. Anal., 2000, 20(4): 663-667

[16]

Jones D. A., Stuart A. M., Titi E. S.. Persistence of invariant sets for dissipative evolution equations. J. Math. Anal. Appl., 1998, 219(2): 479-502

[17]

Ju N.. On the global stability of a temporal discretization scheme for the Navier-Stokes equations. IMA J. Numer. Anal., 2002, 22(4): 577-597

[18]

Kadanoff L. P.. Turbulent heat flow: structures and scaling. Phys. Today, 2001, 54(8): 34-39

[19]

Larsson S.. The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems. SIAM J. Numer. Anal., 1989, 26(2): 348-365

[20]

Lasota A., Mackey M. C.. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics, 1994 Second Edition New York: Springer-Verlag

[21]

Lax P. D.. Functional Analysis, 2002, New York: Wiley

[22]

Leimkuhler B., Reich S.. Simulating Hamiltonian Dynamics, Cambridge Monographs on Applied and Computational Mathematics, 2005, Cambridge: Cambridge University Press

[23]

Li T. T., Qin T. H.. Physics and Partial Differential Equations (in Chinese), 1997, Beijing: Higher Education Press

[24]

Majda A. J., Wang X. M.. Nonlinear Dynamics and Statistical Theory for Basic Geophysical Flows, 2006, Cambridge: Cambridge University Press

[25]

Monin A. S., Yaglom A. M.. Statistical Fluid Mechanics: the Mechanics of Turbulence, 1975, Cambridge, Massachusetts: MIT Press

[26]

Raugel G.. Global attractors in partial differential equations. Handbook of Dynamical Systems, 2, 2002, Amsterdam: North-Holland 885-982

[27]

Reich S.. Backward error analysis for numerical integrators. SIAM J. Numer. Anal., 1999, 36(5): 1549-1570

[28]

Shen J.. Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations. Numer. Funct. Anal. Optimiz., 1989, 10(11): 1213-1234

[29]

Shen J.. Long time stability and convergence for the fully discrete nonlinear Galerkin methods. Appl. Anal., 1990, 38(4): 201-229

[30]

Sigurgeirsson H., Stuart A. M.. DeVore R. A., Iserles A., Suli E.. Statistics from computations, Foundations of Computational Mathematics, 2001, Cambridge: Cambridge University Press 323-344

[31]

Stuart A. M., Humphries A. R.. Dynamical Systems and Numerical Analysis, 1996, Cambridge: Cambridge University Press

[32]

Temam R. M.. Navier-Stokes Equations and Nonlinear Functional Analysis, 1995 Second Edition Philadelphia: SIAM

[33]

Temam R. M.. Infinite Dimensional Dynamical Systems in Mechanics and Physics, 1997 Second Edition New York: Springer-Verlag

[34]

Tone F., Wirosoetisno D.. On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations. SIAM J. Numer. Anal., 2006, 44(1): 29-40

[35]

Tritton D. J.. Physical Fluid Dynamics, 1988, Oxford: Oxford Science Publishing

[36]

Vishik M. I., Fursikov A. V.. Mathematical Problems of Statistical Hydromechanics, 1988, Dordrecht: Kluwer Academic Publishers

[37]

Walters P.. An Introduction to Ergodic Theory, 2000, New York: Springer-Verlag

[38]

Wang X. M.. Infinite Prandtl number limit of Rayleigh-Bénard convection. Comm. Pure Appl. Math., 2004, 57(10): 1265-1282

[39]

Wang X. M.. Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number. Comm. Pure and Appl. Math., 2008, 61(6): 789-815

[40]

Wang X. M.. Upper semi-continuity of stationary statistical properties of dissipative systems. Disc. Cont. Dyn. Sys., 2009, 23A(1–2): 521-540

[41]

Wang, X. M., Approximation of stationary statistical properties of dissipative dynamical systems: time discretization, Math. Comp., 2009, to appear. DOI:10.1090/S0025-5718-09-02256-X

AI Summary AI Mindmap
PDF

89

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/