Mean curvature flow via convex functions on Grassmannian manifolds

Yuanlong Xin , Ling Yang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 315 -328.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 315 -328. DOI: 10.1007/s11401-009-0173-7
Article

Mean curvature flow via convex functions on Grassmannian manifolds

Author information +
History +
PDF

Abstract

Using the convex functions on Grassmannian manifolds, the authors obtain the interior estimates for the mean curvature flow of higher codimension. Confinable properties of Gauss images under the mean curvature flow have been obtained, which reveal that if the Gauss image of the initial submanifold is contained in a certain sublevel set of the υ-function, then all the Gauss images of the submanifolds under the mean curvature flow are also contained in the same sublevel set of the υ-function. Under such restrictions, curvature estimates in terms of υ-function composed with the Gauss map can be carried out.

Keywords

Mean curvature flow / Convex function / Gauss map

Cite this article

Download citation ▾
Yuanlong Xin, Ling Yang. Mean curvature flow via convex functions on Grassmannian manifolds. Chinese Annals of Mathematics, Series B, 2010, 31(3): 315-328 DOI:10.1007/s11401-009-0173-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen J. Y., Li J. Y.. Mean curvature flow of surfaces in 4-manifolds. Adv. Math., 2001, 163: 287-309

[2]

Chen J. Y., Li J. Y.. Singularity of mean curvature flow of Lagrangian submanifolds. Invent. Math., 2004, 156(1): 25-51

[3]

Chen J. Y., Tian G.. Moving symplectic curves in Kähler-Einstein surfaces. Acta Math. Sin. (Engl. Ser.), 2000, 16: 541-548

[4]

Ecker K., Huisken G.. Mean curvature evolution of entire graphs. Ann. of Math., 1989, 130(3): 453-471

[5]

Ecker K., Huisken G.. Interior estimates for hypersurfaces moving by mean curvature. Invent. Math., 1991, 105: 547-569

[6]

Jost J., Xin Y. L.. Bernstein type theorems for higher codimension. Calc. Var. Part. Diff. Eqs., 1999, 9: 277-296

[7]

Huisken G.. Flow by mean curvature of convex surfaces into spheres. J. Diff. Geom., 1984, 20(1): 237-266

[8]

Huisken G.. Asymptotic behavior for singularities of the mean curvature flow. J. Diff. Geom., 1990, 31(1): 285-299

[9]

Smoczyk K.. Harnack inequality for the Lagrangian mean curvature flow. Calc. Var. Part. Diff. Eqs., 1999, 8: 247-258

[10]

Smoczyk K.. Angle theorems for Lagrangian mean curvature flow. Math. Z., 2002, 240: 849-863

[11]

Smoczyk K., Wang M.-T.. Mean curvature flows for Lagrangian submanifolds with convex potentials. J. Diff. Geom., 2002, 62: 243-257

[12]

Wang M.-T.. Gauss maps of the mean curvature flow. Math. Res. Lett., 2003, 10: 287-299

[13]

Wong Y.-C.. Differential geometry of Grassmann manifolds. Proc. Natl. Acad. Sci. USA, 1967, 57: 589-594

[14]

Xin Y. L.. Minimal Submanifolds and Related Topics, 2003, Singapore: World Scientific Publishing

[15]

Xin Y. L.. Geometry of Harmonic Maps, Progress in Nonlinear Differential Equations and Their Applications, Vol. 23, 1996, Boston: Birkhäuser

[16]

Xin Y. L.. Mean curvature flow with convex Gauss image. Chin. Ann. Math., 2008, 29B(2): 121-134

[17]

Xin Y. L.. Curvature estimates for submanifolds with prescribed Gauss image and mean curvature. Calc. Var. Part. Diff. Eqs., 2010, 37: 385-405

[18]

Xin Y. L., Yang L.. Convex functions on Grassmannian manifolds and Lawson-Osserman problem. Adv. Math., 2008, 219: 1298-1326

[19]

Xin Y. L., Yang L.. Curvature estimates for minimal submanifolds of higher codimension. Chin. Ann. Math., 2009, 30B(4): 379-396

AI Summary AI Mindmap
PDF

254

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/