Stochastic wave equations with memory

Tingting Wei , Yiming Jiang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 329 -342.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 329 -342. DOI: 10.1007/s11401-009-0170-x
Article

Stochastic wave equations with memory

Author information +
History +
PDF

Abstract

The authors show the existence and uniqueness of solution for a class of stochastic wave equations with memory. The decay estimate of the energy function of the solution is obtained as well.

Keywords

Stochastic wave equations with memory / Resolvent / Infinite dimensional Wiener process / Energy function

Cite this article

Download citation ▾
Tingting Wei, Yiming Jiang. Stochastic wave equations with memory. Chinese Annals of Mathematics, Series B, 2010, 31(3): 329-342 DOI:10.1007/s11401-009-0170-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alabau-Boussouira F., Cannarsa P., Sforza D.. Decay estimates for second order evolution equations with memory. J. Funct. Anal., 2008, 254: 1342-1372

[2]

Barbu V., Da Prato G., Tubaro L.. Stochastic wave equations with dissipative damping. Stochastic Process. Appl., 2007, 117: 1001-1013

[3]

Bo L. J., Tang D., Wang Y. J.. Explosive solutions of stochastic wave equations with damping on Rd. J. Diff. Eqs., 2008, 244(1): 170-187

[4]

Cannarsa P., Sforza D.. Fabrizio B., Lazzari B., Morro A.. An existence result for semilinear equations in viscoelasticity: the case of regular kernels. Mathematical Models and Methods for Smart Materials, Series on Advances in Mathematics for Applied Sciences, Vol. 62, 2002, Singapore: World Scientific Publishing 343-354

[5]

Cardon-Weber C.. Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli, 2001, 7(5): 777-816

[6]

Cavalcanti M., Oquendo H.. Frictional versus viscoelastic damping in a semilinear wave equation. SIAM J. Control Optim., 2003, 42(4): 1310-1324

[7]

Chow P.-L.. Stochastic wave equations with polynomial nonlinearity. Ann. Appl. Probab., 2002, 12(1): 361-381

[8]

Chow P.-L.. Asymptotics of solutions to semilinear stochastic wave equations. Ann. Appl. Probab., 2006, 16(2): 757-789

[9]

Chow P.-L.. Asymptotic solutions of a nonlinear stochastic beam equation. Discrete Contin. Dyn. Syst. Ser. B., 2006, 6(4): 735-749

[10]

Dafermos C. M.. An abstract Volterra equation with application to linear viscoelasticity. J. Diff. Eqs., 1970, 7: 554-589

[11]

Da Prato G., Zabczyk J.. Stochastic Equations in Infinite Dimensions, 1992, Cambridge: Cambridge University Press

[12]

Prüss J.. Evolutionary Intergral Equations and Applications, Monographs in Mathematics, Vol. 87, 1993, Basel: Birkhäuser

[13]

Rivera J. E. M.. Asymptotic behaviour in linear viscoelasticity. Quart. Apll. Math., 1994, 52: 629-648

[14]

Rivera J. E. M., Salvatierra A. P.. Asymptotic behaviour of the energy in partially viscoelastic materials. Quart. Appl. Math., 2001, 59(3): 557-578

[15]

Walsh J. B.. An introduction to stochastic partial differential equations, École d’Été de Probabilités de Saint Flour XIV—1984, 1986, Berlin: Springer-Verlag 265-439

[16]

Zuazua E.. Exponetial decay for the semilinear wave equation with locally ditributed damping. Comm. Part. Diff. Eqs., 1990, 15(2): 205-235

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/