Weyl and Lidskiĭ inequalities for general hyperbolic polynomials

Denis Serre

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 785 -802.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 785 -802. DOI: 10.1007/s11401-009-0169-3
Article

Weyl and Lidskiĭ inequalities for general hyperbolic polynomials

Author information +
History +
PDF

Abstract

The roots of hyperbolic polynomials satisfy the linear inequalities that were previously established for the eigenvalues of Hermitian matrices, after a conjecture by A. Horn. Among them are the so-called Weyl and Lidskiĭ inequalities. An elementary proof of the latter for hyperbolic polynomials is given. This proof follows an idea from H. Weinberger and is free from representation theory and Schubert calculus arguments, as well as from hyperbolic partial differential equations theory.

Keywords

Hyperbolic polynomials / Real roots / Eigenvalues of Hermitian matrices

Cite this article

Download citation ▾
Denis Serre. Weyl and Lidskiĭ inequalities for general hyperbolic polynomials. Chinese Annals of Mathematics, Series B, 2009, 30(6): 785-802 DOI:10.1007/s11401-009-0169-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benzoni-Gavage S., Serre D.. Multi-dimensional Hyperbolic Partial Differential Equations: First-Order Systems and Applications, 2007, Oxford: Oxford Mathematical Monographs, Oxford University Press

[2]

Bhatia R.. Linear algebra to quantum cohomology: the story of Alfred Horn’s inequalities. Amer. Math. Monthly, 2001, 108(4): 289-318

[3]

Chow S.-N., Hale J. K.. Methods of Bifurcation Theory, 1982, Heidelberg: Springer-Verlag

[4]

Fan K.. On a theorem of Weyl concerning eigenvalues of linear transformations. Proc. Nat. Acad. Sci., 1949, 35(11): 652-655

[5]

Fulton W.. Eigenvalues, invariant factors, highest weights, and Schubert calculus. Bull. Amer. Math. Soc., 2000, 37(3): 209-250

[6]

Gårding L.. Linear hyperbolic partial differential equations with constant coefficients. Acta Math., 1951, 85(1): 1-62

[7]

Harris J.. Algebraic Geometry: A First Course, 1999, New York: Springer-Verlag

[8]

Helton J. W., Vinnikov V.. Linear matrix inequality representation of sets. Comm. Pure Appl. Math., 2007, 60(5): 654-674

[9]

Horn A.. Eigenvalues of sums of Hermitian matrices. Pacific J. Math., 1962, 12(1): 225-241

[10]

Kato T.. Perturbation Theory for Linear Operators, 1980, New York: Springer-Verlag

[11]

Klyachko A.. Stable bundles, representation theory and Hermitian operators. Selecta Math. (New Ser.), 1998, 4(3): 419-445

[12]

Knutson A., Tao T.. The honeycomb model of GLn(ℂ) tensor products I: proof of the saturation conjecture. J. Amer. Math. Soc., 1999, 12(4): 1055-1090

[13]

Kostant B.. Lie algebra cohomology and the generalized Borel-Weil theorem. Ann. Math., 1961, 74(2): 329-387

[14]

Lax P. D.. The multiplicity of eigenvalues. Bull. Amer. Math. Soc., 1982, 6(2): 213-214

[15]

Lax P. D.. Differential equations, difference equations and matrix theory. Comm. Pure Appl. Math., 1958, 11(2): 175-194

[16]

Lewis A. S., Parrilo P. A., Ramana M. V.. The Lax conjecture is true. Proc. Amer. Math. Soc., 2005, 133(9): 2495-2499

[17]

Lidskiĭ B. V.. The proper values of the sum and the product of symmetric matrices. Dokl. Akad. Nauk SSSR, 1950, 74: 769-772

[18]

Weinberger H. F.. Remark on the preceeding paper of Lax. Comm. Pure Appl. Math., 1958, 11(2): 195-196

[19]

Weyl H.. Das asymptotische Verteilungsgesetz der eigenwerte lineare partieller differential-gleichungen. Math. Ann., 1912, 71(4): 441-479

[20]

Wielandt H.. An extremum property of sums of eigenvalues. Proc. Amer. Math. Soc., 1955, 6(1): 106-110

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/