Determination of unknown boundary in the composite materials with Stefan-Boltzmann conditions

Xiaoyi Hu , Wenbin Chen

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 145 -162.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 145 -162. DOI: 10.1007/s11401-009-0165-7
Article

Determination of unknown boundary in the composite materials with Stefan-Boltzmann conditions

Author information +
History +
PDF

Abstract

The authors consider one specific kind of heat transfer problems in a three-dimensional layered domain, with nonlinear Stefan-Boltzmann conditions on the boundaries as well as on the interfaces. To determine the unknown part of the boundary (or corrosion) by the Cauchy data on the reachable part is an important inverse problem in engineering. The mathematical model of this problem is introduced, the well-posedness of the forward problems and the uniqueness of the inverse problems are obtained.

Keywords

Inverse heat problem / Stefan-Boltzmann conditions / Uniqueness

Cite this article

Download citation ▾
Xiaoyi Hu, Wenbin Chen. Determination of unknown boundary in the composite materials with Stefan-Boltzmann conditions. Chinese Annals of Mathematics, Series B, 2010, 31(2): 145-162 DOI:10.1007/s11401-009-0165-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alifanov O. M.. Inverse Heat Transfer Problems, 1994, Berlin: Springer-Verlag

[2]

Aronson D. G.. Non-negative solutions of linear parabolic equations. Annali della Scuola Normale Superiore di Pisa, 1968, 22(3): 607-694

[3]

Bell J. B.. The noncharacteristic Cauchy problem for a class of equations with time dependence. II. Mulitidimensional problems. SIAM J. Math. Anal., 1981, 12(5): 778-797

[4]

Bryan K., Caudill L.. Reconstruction of an unknown boundary portion from Cauchy data in n dimensions. Inverse Problems, 2005, 21: 239-255

[5]

Banks H. T., Kojima F., Winfree W. P.. Boundary shape identification problems in two-dimensional domains related to thermal testing materials. J. Appl. Math., 1989, 47: 273-293

[6]

Banks H. T., Kojima F., Winfree W. P.. Boundary estimation problems arising in thermal tomography. Inverse Problems, 1990, 6: 897-922

[7]

Bryan, K. and Caudill, L., Stability and resolution in thermal imaging, Proc. 1995, ASME Design Engineering Technical Conf., Boston, 1995, 1023–1032.

[8]

Bryan K., Caudill L.. An inverse problem in thermal imaging. SIAM J. Appl. Math., 1996, 59: 715-735

[9]

Bryan K., Caudill L.. Uniqueness for a boundary identification problem in thermal imaging. Electron. J. Diff. Eqs., 1997, C-1: 23-39

[10]

Chapko R., Kress R., Yoon J. R.. An inverse boundary value problem for the heat equaiton: The Neumann condition. Inverse Problems, 1999, 15: 1033-1049

[11]

Conlon J. G., Naddaf A.. Green’s function for elliptic and parabolic equations with random coefficients. New York J. of Math., 2000, 6: 153-225

[12]

Canuto B., Rosset E., Vessella S.. Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unkown boundaries. Trans. Amer. Math. Soc., 2002, 354: 491-535

[13]

Chen, W. B., Cheng, J., Yamamoto, M., et al, The monotone Robin-Robin domain decomposition methods for the elliptic problems with Stefan-Boltzmann conditions, Comm. Comput. Phys., 2010, accepted.

[14]

Duffy D. G.. Green’s Functions with Applications, 2001, New York: Chapman and Hall/CRC

[15]

Evans L. C.. Partial Differential Equations, 1998, Providence, RI: A. M. S.

[16]

Friedman A.. Generalized heat transfer between solids and gases under nonlinear boundary conditions. J. Math. Mech., 1959, 8(2): 161-183

[17]

Imanuvilov O. Y., Yamamoto M.. Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations. Publ. RIMS, Kyoto Univ., 2003, 39(2): 227-274

[18]

Isakov V.. Inverse Problems for Partial Differential Equations, 2006 2nd ed. New York: Springer-Verlag

[19]

John F.. Partial Differential Equations, 1982, New York: Springer-Verlag

[20]

Hu, X. Y., Xu, X. and Chen, W. B., Numerical method for the inverse heat transfer problem in composite materials with Stefan-Boltzmann conditions, Adv. Comp. Math., 2009. DOI:10.1007/s10444-009-9131-x

[21]

Ladyzenskaja O. A., Solonnikov V. A., Uralceva N. N.. Linear and Quasilinear Equations of Parabolic Type, 1968, Providence, RI: A. M. S.

[22]

Ockendon J., Howison S., Lacey A. Applied Partial Differential Equations, 2003, Oxford: Oxford University Press

[23]

Rudin W.. Functional Analysis, 1991, New York: McGraw-Hill

[24]

Vessella S.. Stability estimates in an inverse problem for a three-dimensional heat equation. SIAM J. Math. Anal., 1997, 28: 1354-1370

[25]

Wolf H.. Heat Transfer, 1983, New York: Harper & Row

[26]

Yang G. F., Yamamoto M., Cheng J.. Heat transfer in composite materials with Stefan-Boltzmann interface conditions. Math. Meth. Appl. Sci., 2008, 31(11): 1297-1314

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/