Error estimates for finite-element Navier-Stokes solvers without standard Inf-Sup conditions

Jian-Guo Liu , Jie Liu , Robert L. Pego

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 743 -768.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 743 -768. DOI: 10.1007/s11401-009-0116-3
Article

Error estimates for finite-element Navier-Stokes solvers without standard Inf-Sup conditions

Author information +
History +
PDF

Abstract

The authors establish error estimates for recently developed finite-element methods for incompressible viscous flow in domains with no-slip boundary conditions. The methods arise by discretization of a well-posed extended Navier-Stokes dynamics for which pressure is determined from current velocity and force fields. The methods use C 1 elements for velocity and C 0 elements for pressure. A stability estimate is proved for a related finite-element projection method close to classical time-splitting methods of Orszag, Israeli, DeVille and Karniadakis.

Keywords

Time-dependent incompressible flow / Projection method / Backward facing step / Driven cavity / Stokes pressure / Leray projection / Obtuse corner / Recycling

Cite this article

Download citation ▾
Jian-Guo Liu, Jie Liu, Robert L. Pego. Error estimates for finite-element Navier-Stokes solvers without standard Inf-Sup conditions. Chinese Annals of Mathematics, Series B, 2009, 30(6): 743-768 DOI:10.1007/s11401-009-0116-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Armaly B. F., Durst F., Pereira J. C. F.. Experimental and theoretical investigation of backward-facing step flow. J. Fluid Mech., 1983, 127: 473-496

[2]

Barth T., Bochev P., Gunzburger M.. A taxonomy of consistently stabilized finite element methods for the Stokes problem. SIAM J. Sci. Comput., 2004, 25: 1585-1607

[3]

Bochev P. B., Dohrmann C. R., Gunzburger M. D.. Stabilization of low-order mixed finite elements for the Stokes equations. SIAM J. Numer. Anal., 2006, 44: 82-101

[4]

Brown D. L., Cortez R., Minion M. L.. Accurate projection methods for the incompressible Navier-Stokes equations. J. Comput. Phys., 2001, 168: 464-499

[5]

Botella O., Peyret R.. Benchmark spectral results on the lid-driven cavity flow. Comput. Fluids, 1998, 27: 421-433

[6]

Ciarlet P. G.. The Finite Element Methods for Elliptic Problems, 1978, Amsterdam: North Holland

[7]

W E., Liu J.-G.. Gauge method for viscous incompressible flows. Commun. Math. Sci., 2003, 1: 317-332

[8]

de Veubeke B. F.. A conforming finite element for plate bending. Int. J. Solids Structures, 1968, 4: 95-108

[9]

Girault V., Raviart P.-A.. Finite Element Methods for Navier-Stokes Equations: Theory and Algorithms, 1986, Berlin: Springer-Verlag

[10]

Grubb G., Solonnikov V. A.. Reduction of the basic initial-boundary value problems for the Navier-Stokes equations to initial-boundary value problems for nonlinear parabolic systems of pseudodifferential equations. J. Soviet Math., 1991, 56: 2300-2308

[11]

Grubb G., Solonnikov V. A.. Boundary value problems for the nonstationary Navier-Stokes equations treated by pseudodifferential methods. Math. Scand., 1991, 69: 217-290

[12]

Guermond J. L., Minev P., Shen J.. An overview of projection methods for incompressible flows. Comput. Methods Appl. Mech. Eng., 2006, 195(44–47): 6011-6045

[13]

Guermond J. L., Shen J.. A new class of truly consistent splitting schemes for incompressible flows. J. Comput. Phys., 2003, 192: 262-276

[14]

Henry D.. Geometric Theory of Semilinear Parabolic Equations. Lecture Notes in Mathematics, 1981, Berlin: Springer-Verlag

[15]

Henshaw W. D., Petersson N. A.. A split-step scheme for the incompressible Navier-Stokes equations. Numerical Simulations of Incompressible Flows, 2003, River Edge: World Scientific 108-125

[16]

Johnston H., Liu J.-G.. Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term. J. Comput. Phys., 2004, 199(1): 221-259

[17]

Karniadakis G. E., Israeli M., Orszag S. A.. High-order splitting methods for the incompressible Navier-Stokes equations. J. Comput. Phys., 1991, 97: 414-443

[18]

Kim J., Moin P.. Application of a fractional-step method to incompressible Navier-Stokes equations. J. Comput. Phys., 1985, 59: 308-323

[19]

Lai M. J., Schumaker L. L.. On the approximation power of splines on triangulated quadrangulations. SIAM J. Numer. Anal., 1999, 36: 143-159

[20]

Liu J.-G., Liu J., Pego R. L.. Stability and convergence of efficient Navier-Stokes solvers via a commutator estimate. Comm. Pure Appl. Math., 2007, 60: 1443-1487

[21]

Liu, J.-G. and Pego, R. L., Stable discretization of magnetohydrodynamics in bounded domains, Comm. Math. Sci., 2009, to appear.

[22]

Leriche E., Perchat E., Labrosse G.. Numerical evaluation of the accuracy and stablity properties of high-order direct Stokes solvers with or without temporal splitting. J. Sci. Comput., 2006, 26: 25-43

[23]

Liu, J., A class of efficient, stable Navier-Stokes solvers, Ph. D. thesis, University of Maryland, 2006.

[24]

Orszag S. A., Israeli M., Deville M.. Boundary conditions for incompressible flows. J. Sci. Comput., 1986, 1: 75-111

[25]

Sani R. L., Shen J., Pironneau O.. Pressure boundary condition for the time-dependent incompressible Navier-Stokes equations. Int. J. Numer. Meth. Fluids, 2006, 50: 673-682

[26]

Soane, A. M. and Rostamian, R., Variational problems in weighted Sobolev spaces on non-smooth domains, preprint.

[27]

Timmermans L. J. P., Minev P. D., van de Vosse F. N.. An approximate projection scheme for incompressible flow using spectral elements. Int. J. Numer. Meth. Fluids, 1996, 22: 673-688

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/