Quantifying dynamical predictability: the pseudo-ensemble approach

Jianbo Gao , Wenwen Tung , Jing Hu

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 569 -588.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 569 -588. DOI: 10.1007/s11401-009-0108-3
Article

Quantifying dynamical predictability: the pseudo-ensemble approach

Author information +
History +
PDF

Abstract

The ensemble technique has been widely used in numerical weather prediction and extended-range forecasting. Current approaches to evaluate the predictability using the ensemble technique can be divided into two major groups. One is dynamical, including generating Lyapunov vectors, bred vectors, and singular vectors, sampling the fastest error-growing directions of the phase space, and examining the dependence of prediction efficiency on ensemble size. The other is statistical, including distributional analysis and quantifying prediction utility by the Shannon entropy and the relative entropy. Currently, with simple models, one could choose as many ensembles as possible, with each ensemble containing a large number of members. When the forecast models become increasingly complicated, however, one would only be able to afford a small number of ensembles, each with limited number of members, thus sacrificing estimation accuracy of the forecast errors.

To uncover connections between different information theoretic approaches and between dynamical and statistical approaches, we propose an (ɛ, τ)-entropy and scale-dependent Lyapunov exponent—based general theoretical framework to quantify information loss in ensemble forecasting. More importantly, to tremendously expedite computations, reduce data storage, and improve forecasting accuracy, we propose a technique for constructing a large number of “pseudo” ensembles from one single solution or scalar dataset. This pseudo-ensemble technique appears to be applicable under rather general conditions, one important situation being that observational data are available but the exact dynamical model is unknown.

Keywords

Dynamical predictability / Ensemble forecasting / Relative entropy / Kolmogorov entropy / Scale-dependent Lyapunov exponent

Cite this article

Download citation ▾
Jianbo Gao, Wenwen Tung, Jing Hu. Quantifying dynamical predictability: the pseudo-ensemble approach. Chinese Annals of Mathematics, Series B, 2009, 30(5): 569-588 DOI:10.1007/s11401-009-0108-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramov R., Majda A., Kleeman R.. Information theory and predictability for low frequency variability. J. Atmos. Sci., 2005, 62(1): 65-87

[2]

Atmanspacher H., Scheingraber H.. A fundamental link between system theory and statistical mechanics. Found. Phys., 1987, 17(9): 939-963

[3]

Buizza R., Palmer T.. Impact of ensemble size on ensemble prediction. Mon. Weather Rev., 1998, 126(9): 2503-2518

[4]

Cai D., Haven K., Majda A.. Quantifying predictability in a simple model with complex features. Stoch. Dyn., 2004, 4(4): 547-569

[5]

Carnevale G., Holloway G.. Information decay and the predictability of turbulent flows. J. Fluid Mech., 1982, 116: 115-121

[6]

Cover T., Thomas J.. Elements of Information Theory, 1991, New York: Wiley-Interscience

[7]

Ehrendorfer M., Tribbia J.. Optimal prediction of forecast error covariances through singular vectors. J. Atmos. Sci., 1997, 54(2): 286-313

[8]

Gao J. B., Zheng Z. M.. Local exponential divergence plot and optimal embedding of a chaotic time series. Phys. Lett. A, 1993, 181(2): 153-158

[9]

Gao J. B., Zheng Z. M.. Direct dynamical test for deterministic chaos and optimal embedding of a chaotic time series. Phys. Rev. E, 1994, 49(5): 3807-3814

[10]

Gao J. B., Zheng Z. M.. Direct dynamical test for deterministic chaos. Europhys. Lett., 1994, 25(7): 485-490

[11]

Gao J. B., Hu J., Tung W.-W.. Distinguishing chaos from noise by scale-dependent Lyapunov exponent. Phys. Rev. E, 2006, 74(6): 066204

[12]

Gao J. B., Hu J., Tung W.-W.. Assessment of long range correlation in time series: How to avoid pitfalls. Phys. Rev. E, 2006, 73(1): 016117

[13]

Gao J. B., Cao Y. H., Tung W.-W. Multiscale Analysis of Complex Time Series — Integration of Chaos and Random Fractal Theory, and Beyond, 2007, New York: Wiley-Interscience

[14]

Gaspard P., Wang X. J.. Noise, chaos, and (ɛ, τ)-entropy per unit time. Phys. Rep., 1993, 235(6): 291-343

[15]

Grassberger P., Procaccia I.. Estimation of the Kolmogorov entropy from a chaotic signal. Phys. Rev. A, 1983, 28(4): 2591-2593

[16]

Haken H.. At least one Lyapunov exponent vanishes if the trajectory of an attractor does not contain a fixed point. Phys. Lett. A, 1983, 94: 71-72

[17]

Haven K., Majda A., Abramov R.. Quantifying predictability through information theory: Small sample estimation in a non-Gaussian framework. J. Comput. Phy., 2005, 206(1): 334-362

[18]

Hu, J., Tung, W.-W., Gao, J. B., et al, Uncovering structures in complex time series through scale separation, Phys. Lett. A, 2007, to appear.

[19]

Kalnay E.. Atmospheric Modeling: Data Assimilation and Predictability, 2003, Cambridge: Cambridge University Press

[20]

Kleeman R.. Measuring dynamical prediction utility using relative entropy. J. Atmos. Sci., 2002, 59(13): 2057-2072

[21]

Kleeman R., Majda A.. Predictability in a model of geophysical turbulence. J. Atmos. Sci., 2005, 62(8): 2864-2879

[22]

Kleeman R., Majda A., Timofeyev I.. Quantifying predictability in a model with statistical features of the atmosphere. Proc. Natl. Acad. Sci., 2002, 99(24): 15291-15296

[23]

Kolmogorov A. N.. The local structure of turbulence in incompressible viscous fluid for very large Reynolds numbers. Dokl. Akad. Nauk SSSR, 1941, 30: 299-303

[24]

Lewis J. M.. Roots of ensemble forecasting. Mon. Weather Rev., 2005, 133(7): 1865-1885

[25]

Leung L. Y., North G.. Information theory and climate prediction. J. Climate, 1990, 3(1): 5-14

[26]

Lorenz E. N.. Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20(2): 130-141

[27]

Lorenz E. N.. Predictability of a flow which possesses many scales of motion. Tellus, 1969, 21(3): 289-307

[28]

Lorenz, E. N., Climate predictability, The Physical Bases of Climate and Climate Modeling, GARP Publication Series, 16, World Meteorological Organization, 1975, 132–136.

[29]

Lorenz E. N.. Predictability—a problem partly solved. Proceedings of the Seminar on Predictability, 1, 1996, Reading, Berkshire: ECMWF 1-18

[30]

Lorenz E. N.. Designing chaotic models. J. Atmos. Sci., 2005, 62(5): 1574-1587

[31]

Lorenz E. N., Emanuel K. A.. Optimal Sites for Supplementary Weather Observations: Simulation with a Small Model. J. Atmos. Sci., 1998, 55(3): 399-414

[32]

Majda A., Kleeman R., Cai D.. A mathematical framework for quantifying predictability through relative entropy. Methods Appl. Anal., 2002, 9(3): 425-444

[33]

Mannella R.. Integration of stochastic differential equations on a computer. Internat. J. Modern Phys. C, 2002, 13(9): 1177-1194

[34]

Mintz Y.. A very long-term global integration of the primitive equations of atmospheric motion: An experiment in climate simulation, WMO-IUGG Symposium on Research and Development Aspects of Long-range Forecasting. WMO Technical Note, 1965, 66: 141-167

[35]

Ortega G. J.. A new method to detect hidden frequencies in chaotic time series. Phys. Lett. A, 1995, 209(5–6): 351-355

[36]

Ott E.. Chaos in Dynamical Systems, 2002 Second Edition Cambridge: Cambridge University Press

[37]

Packard N. H., Crutchfield J. P., Farmer J. D. Geometry from a time series. Phys. Rev. Lett., 1980, 45(9): 712-716

[38]

Palmer T., Molteni F., Mureau R. Ensemble prediction. Proceedings of the Validation of Models Over Europe, 1993, 1: 21-66

[39]

Reynolds C., Palmer T.. Decaying singular vectors and their impact on analysis and forecast correction. J. Atmos. Sci., 1998, 55(19): 3005-3023

[40]

Roulston M., Smith L.. Evaluating probabilistic forecasts using information theory. Mon. Weather Rev., 2002, 130(6): 1653-1660

[41]

Sauer T., Yorke J. A., Casdagli M.. Embedology. J. Stat. Phys., 1991, 65(3–4): 579-616

[42]

Schneider T., Griffies S.. A conceptual framework for predictability studies. J. Climate, 1999, 12(10): 3133-3155

[43]

Simmons A., Hollingsworth A.. Some aspects of the improvement in skill of numerical weather prediction. Quart. J. Roy. Meteor. Soc., 2002, 128(580): 647-677

[44]

Smith L. A., Ziehmann C., Fraedrich K.. Uncertainty dynamics and predictability in chaotic systems. Quart. J. Roy. Meteor. Soc., 1999, 125(560): 2855-2886

[45]

Takens F.. Rand D. A., Young L. S.. Detecting strange attractors in turbulence. Dynamical Systems and Turbulence, 1981, Berlin: Springer-Verlag

[46]

Thompson P. D.. Uncertainty of the initial state as a factor in the predictability of large scale atmospheric flow patterns. Tellus, 1957, 9: 275-295

[47]

Toth A., Kalnay E.. Ensemble forecasting at NMC: The generation of perturbations. Bull. Amer. Meteor. Soc., 1993, 74(12): 2317-2330

[48]

Tung W. W., Lin C. C., Chen B. D. Basic modes of cumulus heating and drying observed during TOGA-COARE IOP. Geophys. Res. Lett., 1999, 26(20): 3117-3120

[49]

Tung W.W., Moncrieff M.W., Gao J. B.. A systematic view of the multiscale tropical deep convective variability over the tropical western-Pacific warm pool. J. Climate, 2004, 17(14): 2736-2751

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/