Pattern formations in heat convection problems

Takaaki Nishida , Yoshiaki Teramoto

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 769 -784.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 769 -784. DOI: 10.1007/s11401-009-0101-x
Article

Pattern formations in heat convection problems

Author information +
History +
PDF

Abstract

After Bénard’s experiment in 1900, Rayleigh formulated heat convection problems by the Oberbeck-Boussinesq approximation in the horizontal strip domain in 1916. The pattern formations have been investigated by the bifurcation theory, weakly nonlinear theories and computational approaches. The boundary conditions for the velocity on the upper and lower boundaries are usually assumed as stress-free or no-slip. In the first part of this paper, some bifurcation pictures for the case of the stress-free on the upper boundary and the no-slip on the lower boundary are obtained. In the second part of this paper, the bifurcation pictures for the case of the stress-free on both boundaries by a computer assisted proof are verified. At last, Bénard-Marangoni heat convections for the case of the free surface of the upper boundary are considered.

Keywords

Oberbeck-Boussinesq equation / Heat convection / Pattern formation / Computer assisted proof

Cite this article

Download citation ▾
Takaaki Nishida, Yoshiaki Teramoto. Pattern formations in heat convection problems. Chinese Annals of Mathematics, Series B, 2009, 30(6): 769-784 DOI:10.1007/s11401-009-0101-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bénard H.. Les tourbillons cellulaires dans une nappe liquide. Rev. Gén. Sci. Pure Appl., 1900, 11: 1261-1271

[2]

Boussinesq J.. Théorie Analytique de la Chaleur, 1903, Paris: Gauthier-Villars

[3]

Busse F. H.. Non-linear properties of thermal convection. Rep. Prog. Phys., 1978, 41: 1929-1967

[4]

Crandall M. G., Rabinowitz P. H.. Bifurcation, perturbation of simple eigenvalues, and linearized stability. Arch. Rational Mech. Anal., 1973, 52: 161-180

[5]

Crandall M. G., Rabinowitz P. H.. The Hopf bifurcation theorem in infinite dimensions. Arch. Rational Mech. Anal., 1977, 67: 53-72

[6]

Fujimura K., Yamada S.. The 1: 2 spatial resonance on a hexagonal lattice in two-layered Rayleigh-Bénard problems. Proc. R. Soc. A, 2008, 464: 133-153

[7]

Golubitsky M., Swift J. W., Knobloch E.. Symmetries and pattern selection in Rayleigh-Bénard convection. Phys. D, 1984, 10: 249-276

[8]

Henry D.. Geometric Theory of Semilinear Parabolic Equations, 1981, New York: Springer-Verlag

[9]

Iohara T., Nishida T., Teramoto Y.. Bénard-Marangoni convection with a deformable surface. RIMS Kokyuroku, 1996, 974: 30-42

[10]

Joseph D. D.. On the stability of the Boussinesq equations. Arch. Rational Mech. Anal., 1965, 20: 59-71

[11]

Kawanago T.. Computer assisted proof to symmetry-breaking bifurcation phenomena in nonlinear vibration. Japan J. Indust. Appl. Math., 2004, 21: 75-108

[12]

Kim M., Nakao M. T., Watanabe Y.. A numerical verification method of bifurcating solutions for 3-dimensional Rayleigh-Bénard problems. Numer. Math., 2008, 111: 389-406

[13]

Kirchgässner K., Kielhöofer H.. Stability and bifurcation in fluid dynamics. Rocky Mountain J. Math., 1973, 3: 275-318

[14]

Lorenz E. N.. Deterministic nonperiodic flow. J. Atmos. Sci., 1963, 20: 130-141

[15]

Nakao, M. T., Watanabe, Y., Yamamoto, N., et al, A numerical verification of bifurcation points for nonlinear heat convection problems, Proceedings of the Second International Conference on From Scientific Computing to Computational Engineering, Athen, July 5–8, 2006.

[16]

Nishida T., Ikeda T., Yoshihara H.. Babuska I., Ciarlet P. G., Miyoshi T.. Pattern formation of heat convection problems, Mathematical Modeling and Numerical Simulation in Continuum Mechanics, 2001, New York: Springer-Verlag 209-218

[17]

Nishida, T. and Teramoto, Y., On a linearized system arising in the study of Bénard-Marangoni convection, Proceedings of the International Conference on Navier-Stokes Equations and their Applications, 2006, 1–20; RIMS Kokyuroku Bessatsu, B1, 2007, 271-286.

[18]

Nishida, T. and Teramoto, Y., Bifurcation theorems for the model system of Bénard-Marangoni convection, J. Math. Fluid Mech., published online, 2007. DOI:10.1007/s00021-007-0263-9

[19]

Oberbeck A.. Über die Wärmeleitung der Flüssigkeiten bei der Berücksichtigung der Strömungen infolge von Temperaturdifferenzen. Ann. Phys. Chem., 1879, 7: 271-292

[20]

Ogawa T.. Hexagonal patterns of Bénard heat convection. RIMS Kokyuroku, 1368, 2004: 144-151

[21]

Rayleigh L.. On convection currents in a horizontal layer of fluid, when the higher temperature is on the under side. Phil. Mag., 1916, 32: 529-546

[22]

Urabe M.. Galerkin’s procedure for nonlinear periodic systems. Arch. Rational Mech. Anal., 1965, 20: 120-152

[23]

Watanabe Y., Yamamoto N., Nakao M.. A numerical verification method for bifurcated solutions of Rayleigh-Bénard problems. J. Math. Fluid Mech., 2004, 6: 1-20

[24]

Yudovich V. I.. On the onset of convection. J. Appl. Math. Mech., 1966, 30: 1193-1199

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/