Existence of solutions for three dimensional stationary incompressible Euler equations with nonvanishing vorticity

Chunlei Tang , Zhouping Xin

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 803 -830.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 803 -830. DOI: 10.1007/s11401-009-0092-7
Article

Existence of solutions for three dimensional stationary incompressible Euler equations with nonvanishing vorticity

Author information +
History +
PDF

Abstract

In this paper, solutions with nonvanishing vorticity are established for the three dimensional stationary incompressible Euler equations on simply connected bounded three dimensional domains with smooth boundary. A class of additional boundary conditions for the vorticities are identified so that the solution is unique and stable.

Keywords

Three dimensional stationary incompressible Euler equations / Boundary value condition / Nonvanishing vorticity

Cite this article

Download citation ▾
Chunlei Tang, Zhouping Xin. Existence of solutions for three dimensional stationary incompressible Euler equations with nonvanishing vorticity. Chinese Annals of Mathematics, Series B, 2009, 30(6): 803-830 DOI:10.1007/s11401-009-0092-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Alber H. D.. Existence of three dimensional, steady, inviscid, incompressible flows with nonvanishing vorticity. Math. Ann., 1992, 292(1): 493-528

[2]

Ambrosetti A., Struwe M.. Existence of steady vortex rings in an ideal fluid. Arch. Rational Mech. Anal., 1989, 108(2): 97-109

[3]

Badiani T. V.. Existence of steady symmetric vortex pairs on a planar domain with an obstacle. Math. Proc. Cambridge Philos. Soc., 1998, 123(2): 365-384

[4]

Boulmezaoud T. Z., Amari T.. On the existence of non-linear force-free fields in three-dimensional domains. Z. Angew. Math. Phys., 2000, 51(6): 942-967

[5]

Burton G. R.. Steady symmetric vortex pairs and rearrangements. Proc. R. Soc. Edinb. Sect. A, 1988, 108(2): 269-290

[6]

Caglioti E., Lions P.-L., Marchioro C. A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description, Part II. Comm. Math. Phys., 1995, 174(2): 229-260

[7]

Caglioti E., Lions P.-L., Marchioro C. A special class of stationary flows for two-dimensional Euler equations: a statistical mechanics description. Comm. Math. Phys., 1992, 143(3): 501-525

[8]

Chacon T., Pironneau O.. Solution of the 3-D stationary Euler equation by optimal control methods. Control Problems for Systems Described by Partial Differential Equations and Applications, 1987, Berlin: Springer-Verlag 175-184

[9]

Chacon T., Pironneau O.. Optimal control as a tool for solving the stationary Euler equation with periodic boundary conditions. System Modelling and Optimization, 1986, Berlin: Springer-Verlag 170-176

[10]

Chicone C.. The topology of stationary curl parallel solutions of Euler’s equations. Israel J. Math., 1981, 39(1–2): 161-166

[11]

Èrenburg V. B.. A plane stationary problem with a free boundary and a boundary corner for the Euler equations (in Russian). Dinamika Splošn. Sredy Vyp., 1973, 14: 131-141

[12]

Fraenkel L. E., Berger M. S.. A global theory of steady vortex rings in an ideal fluid. Acta Math., 1974, 132(1): 13-51

[13]

Frewer M., Oberlack M., Guenther S.. Symmetry investigations on the incompressible stationary axisymmetric Euler equations with swirl. Fluid Dyn. Res., 2007, 39(8): 647-664

[14]

Friedman A., Turkington B.. Vortex rings: existence and asymptotic estimates. Trans. Amer. Math. Soc., 1981, 268(1): 1-37

[15]

Glass O.. Asymptotic stabilizability by stationary feedback of the two-dimensional Euler equation: the multiconnected case. SIAM J. Control Optim., 2005, 44(3): 1105-1147

[16]

Kaptsov O. V.. Elliptic solutions of the stationary Euler equations (in Russian). Dokl. Akad. Nauk SSSR, 1988, 298(3): 597-600

[17]

Majda A.. Vorticity and the mathematical theory of incompressible fluid flow. Comm. Pure Appl. Math., 1986, 39(S1): S187-S220

[18]

Majda A., Bertozzi A.. Vorticity and Incompressible Flow, 2002, Cambridge: Cambridge University Press

[19]

Meshcheryakova E. Y.. On new stationary and self-similar solutions of the Euler equations (in Russian). Prikl. Mekh. Tekhn. Fiz., 2003, 44(4): 3-9

[20]

Ni W.-M.. On the existence of global vortex rings. J. Anal. Math., 1980, 37(1): 208-247

[21]

Nishiyama T.. Magnetohydrodynamic approaches to measure-valued solutions of the two-dimensional stationary Euler equations. Bull. Inst. Math. Acad. Sinica (New Ser.), 2007, 2(2): 139-154

[22]

Nishiyama T.. Construction of solutions to the two-dimensional stationary Euler equations by the pseudo-advection method. Arch. Math., 2003, 81(4): 467-477

[23]

Nishiyama T.. Magnetohydrodynamic approach to solvability of the three-dimensional stationary Euler equations. Glasg. Math. J., 2002, 44(3): 411-418

[24]

Nishiyama T.. Pseudo-advection method for the axisymmetric stationary Euler equations. Z. Angew. Math. Mech., 2001, 81(10): 711-715

[25]

Nishiyama T.. Pseudo-advection method for the two-dimensional stationary Euler equations. Proc. Amer. Math. Soc., 2001, 129(2): 429-432

[26]

Picard R.. On the low frequency asymptotics in electromagnetic theory. J. Reine Angew. Math., 1985, 354: 50-73

[27]

Solopenko V. M.. Physical formulation and classical solvability of stationary Euler equations in ℝ2 (in Russian). Dinamika Sploshn. Sredy, 1988, 85: 137-145

[28]

Sofronov, I. L., A rapidly converging method for determining stationary solutions of Euler equations (in Russian), Akad. Nauk SSSR Inst. Prikl. Mat. Preprint, 48, 1988.

[29]

Troshkin O. V.. A two-dimensional flow problem for steady-state Euler equations. Math. USSR Sbornik, 1990, 66(2): 363-382

[30]

Tur A., Yanovsky V.. Point vortices with a rational necklace: new exact stationary solutions of the two-dimensional Euler equation. Phys. Fluids, 2004, 16(8): 2877-2885

[31]

Turkington B.. On steady vortex flow in two dimensions, I, II. Comm. PDEs, 1983, 8(9): 999-1030

[32]

Turkington B.. Vortex rings with swirl: axisymmetric solutions of the Euler equations with nonzero helicity. SIAM J. Math. Anal., 1989, 20(1): 57-73

[33]

Weber C.. Regularity theorems for Maxwell’s equations. Math. Methods Appl. Sci., 1981, 3(1): 523-536

[34]

Wolansky G.. Existence, uniqueness, and stability of stationary barotropic flow with forcing and dissipation. Comm. Pure Appl. Math., 1988, 41(1): 19-46

[35]

Yamaleev N. K.. The marching method for solving stationary Euler equations on adaptive grids (in Russian). Mat. Model., 1997, 9(10): 83-97

[36]

Yoshida Z., Giga Y.. Remarks on spectra of operator rot. Math. Z., 1990, 204(1): 235-245

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/