Short-time linear response with reduced-rank tangent map

Rafail V. Abramov

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 447 -462.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 447 -462. DOI: 10.1007/s11401-009-0088-3
Article

Short-time linear response with reduced-rank tangent map

Author information +
History +
PDF

Abstract

The recently developed short-time linear response algorithm, which predicts the response of a nonlinear chaotic forced-dissipative system to small external perturbation, yields high precision of the response prediction. However, the computation of the short-time linear response formula with the full rank tangent map can be expensive. Here, a numerical method to potentially overcome the increasing numerical complexity for large scale models with many variables by using the reduced-rank tangent map in the computation is proposed. The conditions for which the short-time linear response approximation with the reduced-rank tangent map is valid are established, and two practical situations are examined, where the response to small external perturbations is predicted for nonlinear chaotic forced-dissipative systems with different dynamical properties.

Keywords

Fluctuation-dissipation theorem / Linear response

Cite this article

Download citation ▾
Rafail V. Abramov. Short-time linear response with reduced-rank tangent map. Chinese Annals of Mathematics, Series B, 2009, 30(5): 447-462 DOI:10.1007/s11401-009-0088-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abramov R., Majda A.. Blended response algorithms for linear fluctuation-dissipation for complex nonlinear dynamical systems. Nonlinearity, 2007, 20: 2793-2821

[2]

Abramov R., Majda A.. A new algorithm for low-frequency climate response. J. Atmos. Sci., 2009, 66(2): 286-309

[3]

Abramov R., Majda A.. New approximations and tests of linear fluctuation-response for chaotic nonlinear forced-dissipative dynamical systems. J. Nonlinear Sci., 2008, 18(3): 303-341

[4]

Abramov R., Majda A., Kleeman R.. Information theory and predictability for low frequency variability. J. Atmos. Sci., 2005, 62(1): 65-87

[5]

Bell T.. Climate sensitivity from fluctuation dissipation: Some simple model tests. J. Atmos. Sci., 1980, 37(8): 1700-1708

[6]

Carnevale G., Falcioni M., Isola S. Fluctuation-response in systems with chaotic behavior. Phys. Fluids A, 1991, 3(9): 2247-2254

[7]

Cohen B., Craig G.. The response time of a convective cloud ensemble to a change in forcing. Quart. J. Roy. Met. Soc., 2004, 130(598): 933-944

[8]

Crommelin D., Vanden-Eijnden E.. Subgrid scale parameterization with conditional Markov chains. J. Atmos. Sci., 2008, 65(8): 2661-2675

[9]

Eckmann J., Ruelle D.. Ergodic theory of chaos and strange attractors. Rev. Mod. Phys., 1985, 57(3): 617-656

[10]

Evans D., Morriss G.. Statistical Mechanics of Nonequilibrium Liquids, 1990, New York: Academic Press

[11]

Fatkullin I., Vanden-Eijnden E.. A computational strategy for multiscale systems with applications to Lorenz 96 model. J. Comput. Phys., 2004, 200(2): 605-638

[12]

Franzke C.. Dynamics of low-frequency variability: Barotropic mode. J. Atmos. Sci., 2002, 59(20): 2897-2909

[13]

Gritsun A.. Fluctuation-dissipation theorem on attractors of atmospheric models. Russ. J. Numer. Math. Modeling, 2001, 16(2): 115-133

[14]

Gritsun A., Branstator G.. Climate response using a three-dimensional operator based on the fluctuation-dissipation theorem. J. Atmos. Sci., 2007, 64(7): 2558-2575

[15]

Gritsun A., Branstator G., Dymnikov V.. Construction of the linear response operator of an atmospheric general circulation model to small external forcing. Num. Anal. Math. Modeling, 2002, 17: 399-416

[16]

Gritsun A., Branstator G., Majda A.. Climate response of linear and quadratic functionals using the fluctuation dissipation theorem. J. Atmos. Sci., 2008, 65(9): 2824-2841

[17]

Gritsun A., Dymnikov V.. Barotropic atmosphere response to small external actions: theory and numerical experiments. Atmos. Ocean Phys., 1999, 35(5): 511-525

[18]

Kubo R., Toda M., Hashitsume N.. Statistical Physics II: Nonequilibrium Statistical Mechanics, 1985, New York: Springer-Verlag

[19]

Leith C.. Climate response and fluctuation-dissipation. J. Atmos. Sci., 1975, 32(10): 2022-2026

[20]

Lorenz, E., Predictability: a problem partly solved, Proceedings of the Seminar on Predictability, European Centre for Medium-Range Weather Forecast, Shinfield Park, Reading, England, 1996.

[21]

Lorenz E., Emanuel K.. Optimal sites for supplementary weather observations. J. Atmos. Sci., 1998, 55(3): 399-414

[22]

Majda A., Abramov R., Grote M.. Information Theory and Stochastics for Multiscale Nonlinear Systems, 2005, Providence, RI: A. M. S.

[23]

Risken F.. The Fokker-Planck Equation, 1988 Second Edition New York: Springer-Verlag

[24]

Ruelle D.. Differentiation of SRB states. Comm. Math. Phys., 1997, 187(1): 227-241

[25]

Ruelle D.. General linear response formula in statistical mechanics, and the fluctuation-dissipation theorem far from equilibrium. Phys. Lett. A, 1998, 245(3–4): 220-224

[26]

Selten F.. An efficient description of the dynamics of barotropic flow. J. Atmos. Sci., 1995, 52(7): 915-936

[27]

Young L.-S.. What are SRB measures, and which dynamical systems have them?. J. Stat. Phys., 2002, 108(5–6): 733-754

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/