Ocean-atmosphere interaction in the lifecycle of ENSO: The coupled wave oscillator

Jialin Lin

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 715 -728.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (6) : 715 -728. DOI: 10.1007/s11401-009-0072-y
Article

Ocean-atmosphere interaction in the lifecycle of ENSO: The coupled wave oscillator

Author information +
History +
PDF

Abstract

To explain the oscillatory nature of El Nino/Southern Oscillation (ENSO), many ENSO theories emphasize the free oceanic equatorial waves propagating/reflecting within the Pacific Ocean, or the discharge/recharge of Pacific-basin-averaged ocean heat content. ENSO signals in the Indian and Atlantic oceans are often considered as remote response to the Pacific SST anomaly through atmospheric teleconnections. This study investigates the ENSO life cycle near the equator using long-term observational datasets. Space-time spectral analysis is used to identify and isolate the dominant interannual oceanic and atmospheric wave modes associated with ENSO. Nino3 SST anomaly is utilized as the ENSO index, and lag-correlation/regression are used to construct the composite ENSO life cycle. The propagation, structure and feedback mechanisms of the dominant wave modes are studied in detail. The results show that the dominant oceanic equatorial wave modes associated with ENSO are not free waves, but are two ocean-atmosphere coupled waves including a coupled Kelvin wave and a coupled equatorial Rossby (ER) wave. These waves are not confined only to the Pacific Ocean, but are of planetary scale with zonal wavenumbers 1–2, and propagate all the way around the equator in more than three years, leading to the longer than 3-year period of ENSO. When passing the continents, they become uncoupled atmospheric waves. The coupled Kelvin wave has larger variance than the coupled ER wave, making the total signals dominated by eastward propagation. Surface zonal wind stress (x) acts to slow down the waves. The two coupled waves interact with each other through boundary reflection and superposition, and they also interact with an off-equatorial Rossby wave in north Pacific along 15N through boundary reflection and wind stress forcing. The precipitation anomalies of the two coupled waves meet in the eastern Pacific shortly after the SST maximum of ENSO and excite a dry atmospheric Kelvin wave which quickly circles the whole equator and leads to a zonally symmetric signal of troposphere temperature. ENSO signals in the Indian and Atlantic oceans are associated with the two coupled waves as well as the fast atmospheric Kelvin wave. The discharge/recharge of Pacific-basin-averaged ocean heat content is also contributed by the two coupled waves. The above results suggest the presence of an alternative coupled wave oscillator mechanism for the oscillatory nature of ENSO.

Keywords

ENSO / Ocean-atmosphere interaction / Equatorial waves

Cite this article

Download citation ▾
Jialin Lin. Ocean-atmosphere interaction in the lifecycle of ENSO: The coupled wave oscillator. Chinese Annals of Mathematics, Series B, 2009, 30(6): 715-728 DOI:10.1007/s11401-009-0072-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Philander S. G.. El Niño, La Niña, and the Southern Oscillation, 1990, London: Academic Press

[2]

Barnston A. G., He Y., Glantz M. H.. Predictive skill of statistical and dynamical climate models in SST forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull. Amer. Meteor. Soc., 1999, 80: 217-244

[3]

Lin J. L.. Interdecadal variability of ENSO in 21 IPCC AR4 coupled GCMs. Geophys. Res. Let., 2007, 34: L12702

[4]

Bjerknes J.. Atmospheric teleconnections from the equatorial Pacific. Mon. Weather Rev., 1969, 97: 163-172

[5]

Neelin J. D., Battisti D. S., Hirst A. C. ENSO theory. J. Geophys. Res., 1998, 103: 14261-14290

[6]

Wang, C. and Picaut, J., Understanding ENSO physics-A review, Earth’s Climate: The Ocean-Atmosphere Interaction, C. Wang, S.-P. Xie and J. A. Carton (eds.), AGU Geophysical Monograph Series, 147, 2004, 21–48.

[7]

Suarez M. J., Schopf P. S.. A delayed action oscillator for ENSO. J. Atmos. Sci., 1988, 45: 3283-3287

[8]

Battisti D. S., Hirst A. C.. Interannual variability in the tropical atmosphere-ocean model: influence of the basic state, ocean geometry and nonlineary. J. Atmos. Sci., 1989, 46: 1687-1712

[9]

Picaut J., Masia F., du Penhoat Y.. An advective-reflective conceptual model for the oscillatory nature of the ENSO. Science, 1997, 277: 663-666

[10]

Weisberg R. H., Wang C.. A western Pacific oscillator paradigm for the El Niño-Southern Oscillation, Geophys. Res. Lett., 1997, 24: 779-782

[11]

Jin F.-F.. An equatorial ocean recharge paradigm for ENSO, Part I: Conceptual model. J. Atmos. Sci., 1997, 54: 811-829

[12]

Jin F.-F.. An Equatorial ocean recharge paradigm for ENSO, Part II: a stripped-down coupled model. J. Atmos. Sci., 1997, 54: 830-847

[13]

Boulanger J.-P., Menkes C.. Propagation and reflection of long equatorial waves in the Pacific ocean during the 1992–1993 El Niño. J. Geophys. Res., 1995, 100: 25041-25059

[14]

Picaut J., Hackert E., Busalacchi A. J. Mechanisms of the 1997–1998 El Niño-La Niña, as inferred from space-based observations. J. Geophys. Res., 2002, 107: 30-37

[15]

Matsuno T.. Quasi-geostrophic motions in the equatorial area. J. Meteor. Soc. Japan, 1966, 44: 25-43

[16]

Lindzen R. S.. Planetary waves on beta-planes. Mon. Wea. Rev., 1967, 95: 441-451

[17]

Hayashi Y.. Space-time spectral analysis and its applications to atmospheric waves. J. Meteor. Soc. Japan, 1982, 60: 156-171

[18]

Wheeler M., Kiladis G. N.. Convectively coupled equatorial waves: analysis of clouds and temperature in the wavenumber-frequency domain. J. Atmos. Sci., 1999, 56: 374-399

[19]

Lin J. L., Kiladis G. N., Mapes B. E. Tropical intraseasonal variability in 14 IPCC AR4 climate models, Part I: Convective signals. J. Climate, 2006, 19: 2665-2690

[20]

Alexander M. A., Blade I., Newman M. The atmospheric bridge: The influence of ENSO teleconnections on airsea interaction over the global oceans. J. Climate, 2002, 15: 2205-2231

[21]

Barnett T. P.. Interaction of the Monsoon and Pacific trade wind system at interannual time scales, Part I: The equatorial zone. Mon. Wea. Rev., 1983, 111: 756-773

[22]

Trenberth K. E., Caron J. M., Stepaniak D. P. Evolution of El Niño-Southern Oscillation and global atmospheric surface temperatures. J. Geophys. Res., 2002, 107: 40-65

[23]

Oort A. H., Yienger J. J.. Observed long-term variability in the Hadley circulation and its connection to ENSO. J. Climate, 1996, 9: 2751-2767

[24]

White W. B., Tourre Y. M., Barlow M. A delayed action oscillator shared by biennal, interannual, and decadal signals in the Pacific basin. J. Geophys. Res., 2003, 108: 30-70

[25]

Lin J. L.. The double-ITCZ problem in IPCC AR4 coupled GCMs: Ocean-atmosphere feedback analysis. J. Climate, 2007, 20: 4497-4525

[26]

Lin J. L., Mapes B. E., Han W.. What are the sources of mechanical damping in Matsuno-Gill type models?. J. Climate, 2008, 21: 165-179

[27]

Kalnay E., Kanamitsu M., Kistler R. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Amer. Meteor. Soc., 1996, 77: 437-471

[28]

White W. B.. Design of a global observing system for gyre-scale upper ocean temperature variability. Prog. Oceanogr., 1995, 36: 169-217

[29]

Adler R. F., Huffman G. J., Chang A. The version 2 global precipitation climatology project (GPCP) monthly precipitation analysis (1979-present). J. Hydrometeor., 2003, 4: 1147-1167

[30]

Christy J. R., Spencer R. W., Norris W. B. Error estimates of version 5.0 of MSU-AMSU bulk atmospheric temperatures. J. Atmos. Oceanic Technol., 2003, 20: 613-629

[31]

Gibson, J. K., Kllberg, P., Uppala, S., et al, ERA description, ECMWF Reanalysis Project Report, Ser. 1, 1997.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/