The Riemannian manifolds with boundary and large symmetry

Zhi Chen , Yiqian Shi , Bin Xu

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 347 -360.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 347 -360. DOI: 10.1007/s11401-009-0037-1
Article

The Riemannian manifolds with boundary and large symmetry

Author information +
History +
PDF

Abstract

Seventy years ago, Myers and Steenrod showed that the isometry group of a Riemannian manifold without boundary has a structure of Lie group. In 2007, Bagaev and Zhukova proved the same result for a Riemannian orbifold. In this paper, the authors first show that the isometry group of a Riemannian manifold M with boundary has dimension at most ½ dimM(dimM − 1). Then such Riemannian manifolds with boundary that their isometry groups attain the preceding maximal dimension are completely classified.

Keywords

Riemannian manifold with boundary / Isometry / Rotationally symmetric metric / Principal orbit

Cite this article

Download citation ▾
Zhi Chen, Yiqian Shi, Bin Xu. The Riemannian manifolds with boundary and large symmetry. Chinese Annals of Mathematics, Series B, 2010, 31(3): 347-360 DOI:10.1007/s11401-009-0037-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bagaev A. V., Zhukova N. I.. The isometry groups of Riemannian orbifolds. Sib. Math. J., 2007, 48: 579-592

[2]

Bredon G. E.. Introduction to Compact Transformation Groups, Pure and Applied Mathematics, Vol. 46, 1972, New York: Academic Press

[3]

van Dantzig D., van der Waerden B. L.. Über metrisch homogene Räume. Abh. Math. Sem. Univ. Hamburg, 1928, 6: 374-376

[4]

Hatcher A.. Algebraic Topology, 2002, Cambridge: Cambridge University Press

[5]

Kawakubo K.. The Theory of Transformation Groups, 1991, New York: Oxford University Press

[6]

Kobayashi S.. Transformation Groups in Differential Geometry, Ergebnisse der Mathematik und Ihrer Grenzgebiete, Vol. 70, 1972, Heidelberg: Springer-Verlag

[7]

Kobayshi S., Nomizu K.. Foundations of Differential Geometry, Vol. I, 1963, New York: Interscience Publishers

[8]

Milnor J. W., Stasheff J. D.. Characteristic Classes, 1974, Princeton: Princeton University Press

[9]

Myers S. B., Steenrod N. E.. The group of isometries of a Riemannian manifold. Ann. of Math. (2), 1939, 40: 400-416

[10]

Petersen P.. Riemannian Geometry. Graduate Texts in Mathematics, Vol. 171, 2006 2nd ed. New York: Springer-Verlag

AI Summary AI Mindmap
PDF

141

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/