The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems

Jing Yu , Jingsong He , Wenxiu Ma , Yi Cheng

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 361 -372.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 361 -372. DOI: 10.1007/s11401-009-0032-6
Article

The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems

Author information +
History +
PDF

Abstract

An explicit Bargmann symmetry constraint is computed and its associated binary nonlinearization of Lax pairs is carried out for the super Dirac systems. Under the obtained symmetry constraint, the n-th flow of the super Dirac hierarchy is decomposed into two super finite-dimensional integrable Hamiltonian systems, defined over the super-symmetry manifold R 4N|2N with the corresponding dynamical variables x and t n. The integrals of motion required for Liouville integrability are explicitly given.

Keywords

Symmetry constraints / Binary nonlinearization / Super Dirac systems / Super finite-dimensional integrable Hamiltonian systems

Cite this article

Download citation ▾
Jing Yu, Jingsong He, Wenxiu Ma, Yi Cheng. The Bargmann symmetry constraint and binary nonlinearization of the super Dirac systems. Chinese Annals of Mathematics, Series B, 2010, 31(3): 361-372 DOI:10.1007/s11401-009-0032-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Konopelchenko B., Sidorenko J., Strampp W.. (1 + 1)-dimensional integrable systems as symmetry constraints of (2 + 1)-dimensional systems. Phys. Lett. A, 1991, 157(1): 17-21

[2]

Cheng Y., Li Y. S.. The constraint of the Kadomtsev-Petviashvili equation and its special solutions. Phys. Lett. A, 1991, 157(1): 22-26

[3]

Cheng Y.. Constraints of the Kadomtsev-Petviashvili hierarchy. J. Math. Phys., 1992, 33(11): 3774-3782

[4]

Ma W. X., Strampp W.. An explicit symmetry constraint for the Lax pairs and the adjoint Lax pairs of AKNS systems. Phys. Lett. A, 1994, 185(3): 277-286

[5]

Ma W. X.. New finite-dimensional integrable systems by symmetry constraint of the KdV equations. J. Phys. Soc. Japan, 1995, 64(4): 1085-1091

[6]

Ma W. X., Zeng Y. B.. Binary constrained flows and separation of variables for soliton equations. ANZIAM J., 2002, 44(1): 129-139

[7]

Zeng Y. B., Li Y. S.. The constraints of potentials and the finite-dimensional integrable systems. J. Math. Phys., 1989, 30(8): 1679-1689

[8]

Cao C. W.. Nonlinearization of the Lax system for AKNS hierarchy. Sci. China Ser. A, 1990, 33(5): 528-536

[9]

Cao C. W., Geng X. G.. A nonconfocal generator of involutive systems and three associated soliton hierarchies. J. Math. Phys., 1991, 32(9): 2323-2328

[10]

Ma W. X.. Symmetry constraint of MKdV equations by binary nonlinearization. Phys. A, 1995, 219(3–4): 467-481

[11]

Ma W. X., Zhou R. G.. Adjoint symmetry constraints leading to binary nonlinearization. J. Nonlinear Math. Phys., 2002, 9(Suppl.1): 106-126

[12]

Ma W. X.. Binary nonlinearization for the Dirac systems. Chin. Ann. Math., 1997, 18B(1): 79-88

[13]

Popowicz Z.. The fully supersymmetric AKNS equations. J. Phys. A, 1990, 23(7): 1127-1136

[14]

Gurses M., Oǧuz O.. A super AKNS scheme. Phys. Lett. A, 1985, 108(9): 437-440

[15]

Liu Q. P., Manas M.. Darboux transformations for super-symmetric KP hierarchies. Phys. Lett. B, 2000, 485(1–3): 293-300

[16]

Kupershmidt B. A.. A super Korteweg-de Vries equation: an integrable system. Phys. Lett. A, 1984, 102(5–6): 213-215

[17]

Li Y. S., Zhang L. N.. Super AKNS scheme and its infinite conserved currents. Nuovo Cimento A, 1986, 93(2): 175-183

[18]

Li Y. S., Zhang L. N.. Hamiltonian structure of the super evolution equation. J. Math. Phys., 1990, 31(2): 470-475

[19]

He J. S., Yu J., Cheng Y. Binary nonlinearization of the super AKNS system. Modern Phys. Lett. B, 2008, 22(4): 275-288

[20]

Ma W. X., He J. S., Qin Z. Y.. A supertrace identity and its applications to super integrable systems. J. Math. Phys., 2008, 49(3): 033511

[21]

Hu X. B.. An approach to generate superextensions of integrable systems. J. Phys. A, 1997, 30(2): 619-632

[22]

Ma W. X., Fuchssteiner B., Oevel W.. A 3 × 3 matrix spectral problem for AKNS hierarchy and its binary nonlinearization. Phys. A, 1996, 233(1–2): 331-354

[23]

Ma W. X., Zhou Z. X.. Binary symmetry constraints of N-wave interaction equations in 1 + 1 and 2 + 1 dimensions. J. Math. Phys., 2001, 42(9): 4345-4382

[24]

Jetzer F.. Completely integrable system on supermanifolds, Thesis of the degree of Doctor of Philosophy, Department of Mathematics and Statistics, 1999, Montréal: McGill University

[25]

Shander V. N.. Complete integrability of ordinary differential equations on supermanifolds. Funct. Anal. Appl., 1983, 17(1): 74-75

[26]

Cartier P., DeWitt-Morette C., Ihl M. Olshanetsky M., Vanishetin A. Supermanifolds-application to supersymmetry, Maultiple Facets of Quantization and Supersymmetry, 2002, River Edge: World Scientific Publishing 412-457

AI Summary AI Mindmap
PDF

377

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/