Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity

Guilong Gui , Ping Zhang

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 607 -630.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (5) : 607 -630. DOI: 10.1007/s11401-009-0027-3
Article

Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity

Author information +
History +
PDF

Abstract

Under the assumptions that the initial density ρ 0 is close enough to 1 and ρ 0 − 1 ∈ H s+1(ℝ2), u 0H s(ℝ2) ∩ Ḣ−ε(ℝ2) for s > 2 and 0 < ε < 1, the authors prove the global existence and uniqueness of smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with the viscous coefficient depending on the density of the fluid. Furthermore, the L 2 decay rate of the velocity field is obtained.

Keywords

Inhomogeneous Navier-Stokes equations / Littlewood-Paley theory / Global smooth solutions

Cite this article

Download citation ▾
Guilong Gui, Ping Zhang. Global smooth solutions to the 2-D inhomogeneous Navier-Stokes equations with variable viscosity. Chinese Annals of Mathematics, Series B, 2009, 30(5): 607-630 DOI:10.1007/s11401-009-0027-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abidi H.. Équation de Navier-Stokes avec densité et viscosité variables dans l’espace critique, Rev. Mat. Iberoam., 2007, 23(2): 537-586

[2]

Abidi H., Paicu M.. Existence globale pour un fluide inhomogéne, Ann. Inst. Fourier (Grenoble), 2007, 57: 883-917

[3]

Antontsev, S. N., Kazhikhov, A. V. and Monakhov, V. N., Boundary value problems in mechanics of nonhomogeneous fluids (translated from Russian), Studies in Mathematics and Its Applications, 22, North-Holland, Amsterdam, 1990.

[4]

Antontsev S. N., Kazhikhov A. V.. Mathematical Study of Flows of Nonhomogeneous Fluids (in Russian). Lecture Notes, 1973, Novosibirsk: Novosibirsk State University

[5]

Bony J. M.. Calcul symbolique et propagation des singularités pour les équations aux drivées partielles non linéaires, Ann. Sci. École Norm. Sup., 1981, 14(4): 209-246

[6]

Chemin J. Y.. Perfect Incompressibe Fluids, 1998, New York: Oxford University Press

[7]

Chemin J. Y.. Localization in Fourier space and Navier-Stokes system. Phase Space Analysis of Partial Differential Equations, 2004, Pisa: CRM Series 53-136

[8]

Chemin J. Y., Lerner N.. Flot de champs de vecteurs non lipschitziens et équations de Navier-Stokes, J. Diff. Eqs., 1995, 121: 314-328

[9]

Danchin R.. Density-dependent incompressible viscous fluids in critical spaces. Proc. Roy. Soc. Edinburgh Sect. A, 2003, 133: 1311-1334

[10]

Desjardins B.. Regularity results for two-dimensional flows of multiphase viscous fluids, Arch. Ration. Mech. Anal., 1997, 137: 135-158

[11]

DiPerna R. J., Lions P. L.. Equations différentielles ordinaires et équations de transport avec des coefficients irréguliers, Séminaire EDP, 1989, Palaiseau: Ecole Polytechnique 1988-1989

[12]

Kazhikov A. V.. Solvability of the initial-boundary value problem for the equations of the motion of an inhomogeneous viscous incompressible fluid (in Russian), Dokl. Akad. Nauk SSSR, 1974, 216: 1008-1010

[13]

Ladyzenskaja O. A., Solonnikov V. A.. The unique solvability of an initial-boundary value problem for viscous incompressible inhomogeneous fluids (in Russian), Boundary value problems of mathematical physics, and related questions of the theory of functions 8, Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 1975, 52: 52-109

[14]

Lions P. L.. Mathematical topics in fluid mechanics. Incompressible Models, 1996, New York: Oxford Science Publications, The Clarendon Press, Oxford University Press

[15]

Schonbek M.. Large time behavior of solutions to Navier-Stokes equations, Comm. Part. Diff. Eqs., 1986, 11(7): 733-763

[16]

Simon J.. Nonhomogeneous viscous incompressible fluids: existence of velocity, density, and pressure, SIAM J. Math. Anal., 1990, 21: 1093-1117

[17]

Triebel H.. Theory of Function Spaces. Monograph in Mathematics, 1983, Basel: Birkhauser Verlag

[18]

Wiegner M.. Decay results for weak solutions to the Navier-Stokes equations on Rn, J. London Math. Soc., 1987, 35(2): 303-313

[19]

Zhang P.. Global smooth solutions to the 2-D nonhomogeneous Navier-Stokes equations, Int. Math. Res. Not. IMRN, 2008, 2008(1): 1-26

AI Summary AI Mindmap
PDF

208

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/