The elements in crystal bases corresponding to exceptional modules

Yong Jiang , Jie Sheng , Jie Xiao

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 1 -20.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 1 -20. DOI: 10.1007/s11401-009-0026-4
Article

The elements in crystal bases corresponding to exceptional modules

Author information +
History +
PDF

Abstract

According to the Ringel-Green theorem, the generic composition algebra of the Hall algebra provides a realization of the positive part of the quantum group. Furthermore, its Drinfeld double can be identified with the whole quantum group, in which the BGP-reflection functors coincide with Lusztig’s symmetries. It is first asserted that the elements corresponding to exceptional modules lie in the integral generic composition algebra, hence in the integral form of the quantum group. Then it is proved that these elements lie in the crystal basis up to a sign. Eventually, it is shown that the sign can be removed by the geometric method. The results hold for any type of Cartan datum.

Keywords

Crystal basis / Hall algebra / Exceptional module

Cite this article

Download citation ▾
Yong Jiang, Jie Sheng, Jie Xiao. The elements in crystal bases corresponding to exceptional modules. Chinese Annals of Mathematics, Series B, 2010, 31(1): 1-20 DOI:10.1007/s11401-009-0026-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bernstein I. N., Gel’fand I. M., Ponomarev V. A.. Coxeter functors and Gabriel’s Theorem. Russ. Math. Surv., 1973, 28(2): 17-32

[2]

Crawley-Boevey, W., Exceptional sequences of representations of quivers, Representations of Algebras, CMS Conference Proceedings, V. Dlab and H. Lenzing (eds.), Vol. 14, 1993, 117–124.

[3]

Chen X. Q., Xiao J.. Exceptional sequences in Hall algebras and quantum groups. Compositio Math., 1999, 117(2): 161-187

[4]

Dlab V., Ringel C. M.. Indecoposable representations of graphs and algebras. Mem. Amer. Math. Soc., 1976, 173: 1-57

[5]

Green J. A.. Hall algebras, hereditary algebras and quantum groups. Invent. Math., 1995, 120: 361-377

[6]

Lusztig G.. Introduction on Quantum Groups, 1993, Boston: Birkhäuser

[7]

Lusztig G.. Braid group action and canonical bases. Adv. Math., 1996, 122(2): 237-261

[8]

Lusztig G.. Affine quivers and canonical bases. Inst. Hautes Études Sci. Publ. Math., 1992, 76: 111-163

[9]

Lusztig G.. Broer A.. Canonical bases and Hall algebras. Representation Theories and Algebraic Geometry, 1998, Dordrecht: Kluwer Academic Publishers 365-399

[10]

Li Y. Q., Lin Z. Z.. AR-quiver approach to affine canonical basis elements. J. Algebra, 2007, 318(2): 562-588

[11]

Kashiwara M.. On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J., 1991, 63(2): 465-516

[12]

Peng L. G.. Lie algebras determined by finite Auslander-Reiten quivers. Comm. Algebra, 1998, 26(9): 2711-2725

[13]

Ringel C. M.. Hall algebras and quantum groups. Invent. Math., 1990, 101: 583-592

[14]

Ringel C. M.. The braid group action on the set of exceptional sequences of a hereditary artin algebra. Contemp. Math., 1994, 171: 339-352

[15]

Ringel C. M.. The Hall algebra approach to quantum groups. Aportaciones Mat. Commun., 1995, 15: 85-114

[16]

Ringel C. M.. Green’s theorem on Hall algebras. Representation Theory of Algebras and Related Topics, 1996, 19: 185-245

[17]

Ringel C. M.. PBW-bases of quantum groups. J. Reine. Angew. Math., 1996, 470: 51-58

[18]

Riedtmann C.. Lie algebras generated by indecomposables. J. Algebra, 1994, 170(2): 526-546

[19]

Saito Y.. PBW basis of quantized universal enveloping algebras. Publ. Res. Inst. Math. Sci., 1994, 30(2): 209-232

[20]

Xiao J.. Drinfeld double and Ringle-Green theory of Hall algebras. J. Algebra, 1997, 190(1): 100-144

[21]

Xiao J., Yang S. L.. BGP-reflection functors and Lusztig’s symmetries: a Ringel-Hall algebra approach to quantum groups. J. Algebra, 2001, 241(1): 204-246

[22]

Zhang P.. Triangular decomposition of the composition algebra of the Kronecker algebra. J. Algebra, 1996, 184(1): 159-174

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/