Montel-type theorems in several complex variables with continuously moving targets

Zhenhan Tu , Shasha Zhang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 373 -384.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 373 -384. DOI: 10.1007/s11401-009-0009-5
Article

Montel-type theorems in several complex variables with continuously moving targets

Author information +
History +
PDF

Abstract

The authors introduce a new idea related to Montel-type theorems in higher dimension and prove some Montel-type criteria for normal families of holomorphic mappings and normal holomorphic mappings of several complex variables into P N(ℂ) for continuously moving hyperplanes in pointwise general position. The main results are also true for continuously moving hypersurfaces in pointwise general position. Examples are given to show the sharpness of the results.

Keywords

Holomorphic mappings / Normal families / Picard-type theorems / Value distribution theory

Cite this article

Download citation ▾
Zhenhan Tu, Shasha Zhang. Montel-type theorems in several complex variables with continuously moving targets. Chinese Annals of Mathematics, Series B, 2010, 31(3): 373-384 DOI:10.1007/s11401-009-0009-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Aladro G.. Applications of the Kobayashi metric to normal functions of several complex variables. Utilitas Math., 1987, 31: 13-24

[2]

Aladro G., Krantz S. G.. A criterion for normality in ℂn. J. Math. Anal. Appl., 1991, 161: 1-8

[3]

Bargmann D., Bonk M., Hinkkanen A. Families of meromorphic functions avoiding continuous functions. J. d’Anal. Math., 1999, 79: 379-387

[4]

Bloch A.. Sur les systèmes de fonctions holomorphes à variétés linéaires lacunaires. Ann. Sci. École Norm. Sup., 1926, 43(3): 309-362

[5]

Deimling K.. Nonlinear Functional Analysis, 1985, New York: Springer-Verlag

[6]

Eremenko A.. A Picard type theorem for holomorphic curves. Period. Math. Hung., 1999, 38: 39-42

[7]

Fujimoto H.. Extensions of the big Picard’s theorem. Tôhoku Math J., 1972, 24: 415-422

[8]

Green M.. Holomorphic maps into complex projective space omitting hyperplanes. Trans. Amer. Math. Soc., 1972, 169: 89-103

[9]

Green M.. The hyperbolicity of the complement of 2n + 1 hyperplanes in general positonn in P n and related results. Proc. Amer. Math. Soc., 1977, 66: 109-113

[10]

Hahn K. T.. Asymptotic behavior of normal mappings of several complex variables. Canad. J. Math., 1984, 36: 718-746

[11]

Montel P.. Sur les familles de fonction analytiques qui admettent des valeurs exceptionnelles dans un domaine. Ann. Sci. École Norm. Sup., 1912, 29(3): 487-535

[12]

Nochka E.. On the theory of meromorphic functions. Soviet Math. Dokl., 1983, 27: 377-381

[13]

Ru M., Stoll W.. The second main theorem for moving targets. J. Geom. Anal., 1991, 1: 99-138

[14]

Tsuji M.. Potential Theory in Modern Function Theory, 1959, Tokyo: Maruzen

[15]

Tu Z. H.. Normality criteria for families of holomorphic mappings of several complex variables into P n(ℂ). Proc. Amer. Math. Soc., 1999, 127: 1039-1049

[16]

Tu Z. H., Cao H. Z.. Normal criterion for families of holomorphic maps of several complex variables into P n(ℂ) with moving hypersurfaces. Acta Math. Sci., 2009, 29B(1): 169-175

[17]

Tu Z. H., Li P. L.. Normal families of meromorphic mappings of several complex variables into P n(ℂ) for moving targets. Sci. China Ser. A, 2005, 48(supp.): 355-364

[18]

Wang T. Y.. Julie, A generalization of Picard’s theorem with moving targets. Complex Variables, 2001, 44: 39-45

AI Summary AI Mindmap
PDF

98

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/