Property A and uniform embeddability of metric spaces under decompositions of finite depth

Yujuan Duan , Qin Wang , Xianjin Wang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 21 -34.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 21 -34. DOI: 10.1007/s11401-008-0511-1
Article

Property A and uniform embeddability of metric spaces under decompositions of finite depth

Author information +
History +
PDF

Abstract

Property A and uniform embeddability are notions of metric geometry which imply the coarse Baum-Connes conjecture and the Novikov conjecture. In this paper, the authors prove the permanence properties of property A and uniform embeddability of metric spaces under large scale decompositions of finite depth.

Keywords

Metric space / Uniform embedding / Property A / Large scale decomposition / Permanence property

Cite this article

Download citation ▾
Yujuan Duan, Qin Wang, Xianjin Wang. Property A and uniform embeddability of metric spaces under decompositions of finite depth. Chinese Annals of Mathematics, Series B, 2010, 31(1): 21-34 DOI:10.1007/s11401-008-0511-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bell G. C.. Property A for groups acting on metric spaces. Topology Appl., 2003, 130(3): 239-251

[2]

Chen X. M., Dadarlat M., Guentner E.. Uniform embeddability and exactness of free products. J. Funct. Anal., 2003, 205(1): 168-179

[3]

Choonkil P.. Isomorphisms between quasi-Banach algebras. Chin. Ann. Math., 2007, 28B(3): 353-362

[4]

Dadarlat M., Guentner E.. Constructions preserving Hilbert space uniform embeddability of discrete groups. Trans. Amer. Math. Soc., 2003, 355(8): 3253-3275

[5]

Dadarlat M., Guentner E.. Uniform embeddability of relatively hyperbolic groups. J. Reine Angew. Math., 2007, 612: 1-15

[6]

Gromv M.. Niblo G., Roller M.. Asymptotic invariants of infinite groups. Geometric Group Theory, 1993, Cambridge: Cambridge University Press

[7]

Guentner E., Kaminker J.. Exactness and the Novikov conjecture. Topology, 2002, 41(2): 411-418

[8]

Guentner E., Kaminker J.. Addendum to “Exactness and the Novikov conjecture”. Topology, 2002, 41(2): 419-420

[9]

Guentner, E., Tessera, R. and Yu, G. L., Decomposition complexity and the stable Borel conjecture, preprint, 2008.

[10]

Higson N., Roe J.. Amenable group actions and the Novikov conjecture. J. Reine Angew. Math., 2000, 519: 143-153

[11]

Hu Y. J., Wang Q.. Ideal in the Roe algebras of discrete metric spaces with coefficients in B(H). Chin. Ann. Math., 2009, 30B(2): 139-144

[12]

Joita M.. On representations associated with completely n-positive linear maps on pro-C*-algebras. Chin. Ann. Math., 2008, 29B(1): 55-64

[13]

Kirchberg E., Wassermann S.. Permanence properties of C*-exact groups. Documenta Math., 1999, 4: 513-558

[14]

Nowak P.. Coarsely embeddable metric spaces without Property A. J. Funct. Anal., 2007, 252(1): 126-136

[15]

Ozawa N.. Amenable actions and exactness for discrete groups. C. R. Acad. Sci. Paris. Ser. I Math., 2000, 330: 691-695

[16]

Ozawa N.. Boundary amenability of relatively hyperbolic groups. Topology Appl., 2006, 153(14): 2624-2630

[17]

Roe J.. Lectures on Coarse Geometry. University Lecture Series, 2003, Providence, RI: AMS

[18]

Shakhmurov V. B.. Embedding theorem in B-spaces and applications. Chin. Ann. Math, 2008, 29B(1): 95-112

[19]

Tu J.-L.. Remark on Yu’s ‘property A’ for discrete metric spaces and groups. Bull. Soc. Math. France, 2001, 129(1): 115-139

[20]

Willett, R., Some notes on Property A, 2006. arXiv:math.OA/0612492v1

[21]

Yu G. L.. The coarse Baum-Connes conjecture of spaces which admit a uniformly embedding into Hilbert spaces. Invent. Math., 2000, 139(1): 201-240

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/