The tracial Rokhlin property for automorphisms on non-simple C*-algebras

Jiajie Hua

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 191 -200.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 191 -200. DOI: 10.1007/s11401-008-0445-7
Article

The tracial Rokhlin property for automorphisms on non-simple C*-algebras

Author information +
History +
PDF

Abstract

Let A be a unital AF-algebra (simple or non-simple) and let α be an automorphism of A. Suppose that α has certain Rokhlin property and A is α-simple. Suppose also that there is an integer J ≥ 1 such that α *0 J = id K 0(A). The author proves that A α ℤ has tracial rank zero.

Keywords

Rokhlin property / Tracial rank zero / AF-algebra

Cite this article

Download citation ▾
Jiajie Hua. The tracial Rokhlin property for automorphisms on non-simple C*-algebras. Chinese Annals of Mathematics, Series B, 2010, 31(2): 191-200 DOI:10.1007/s11401-008-0445-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Connes A.. Outer conjugcy class of automorphisms of factors. Ann. Sci. Ecole Norm. Sup., 1975, 8: 383-420

[2]

Herman R., Ocneanu A.. Stability for integer actions on UHF-C*-algebras. J. Funct. Anal., 1984, 59: 132-144

[3]

Jang S., Lee S.. Simplicity of crossed products of C*-algebras. Proc. Amer. Math. Soc., 1993, 118(3): 823-826

[4]

Jeong J., Osaka H.. Extremally rich C*-crossed products and the cancellation property. J. Austral. Math. Soc. Ser. A, 1998, 64: 285-301

[5]

Kishimoto A.. Outer automorphisms and reduced crossed products of simple C*-algebra. Comm. Math. Phys., 1981, 81: 429-435

[6]

Kishimoto A.. The Rohlin property for shifts on UHF-algebras and automorphisms of Cuntz algebras. J. Funct. Anal., 1996, 140: 100-123

[7]

Kishimoto A.. Automorphisms of AT-algebras with the Rohlin property. Operator Theory, 1998, 40: 277-294

[8]

Lin H.. Tracial topological ranks of C*-algebra. Proc. London Math. Soc., 2001, 83: 199-234

[9]

Lin H.. An Introduction to the Classification of Amenable C*-Algebra, 2001, Singapore: World Scientific

[10]

Lin H.. The Rokhlin property for automorphisms on simple C*-Algebras. Operator Theory, Operator Algebras, and Applications, 2006, Providence, RI: A. M. S. 189-215

[11]

Lin H.. Tracially Quasidiagonal Extensions. Canad. Math. Bull., 2003, 46(3): 388-399

[12]

Osaka H., Phillips N. C.. Stable and real rank for crossed products by automorphisms with the tracial Rokhlin property. Ergodic Theory Dynam. Systems, 2006, 26(5): 1579-1621

[13]

Rørdam M.. Classification of certain infinte simple C*-algebras. J. Funct. Anal., 1995, 131: 415-458

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/