Global exact boundary controllability for cubic semi-linear wave equations and Klein-Gordon equations
Yi Zhou , Wei Xu , Zhen Lei
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 35 -58.
Global exact boundary controllability for cubic semi-linear wave equations and Klein-Gordon equations
The authors prove the global exact boundary controllability for the cubic semi-linear wave equation in three space dimensions, subject to Dirichlet, Neumann, or any other kind of boundary controls which result in the well-posedness of the corresponding initial-boundary value problem. The exponential decay of energy is first established for the cubic semi-linear wave equation with some boundary condition by the multiplier method, which reduces the global exact boundary controllability problem to a local one. The proof is carried out in line with [2, 15]. Then a constructive method that has been developed in [13] is used to study the local problem. Especially when the region is star-complemented, it is obtained that the control function only need to be applied on a relatively open subset of the boundary. For the cubic Klein-Gordon equation, similar results of the global exact boundary controllability are proved by such an idea.
Global exact boundary controllability / Cubic semi-linear wave equations / The exponential decay / Star-shaped / Star-complemented / Cubic Klein-Gordon equations
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
|
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
/
| 〈 |
|
〉 |