Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation

Pengfei Yao

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 59 -70.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 59 -70. DOI: 10.1007/s11401-008-0421-2
Article

Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation

Author information +
History +
PDF

Abstract

Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.

Keywords

Wave equation / Riemannian metric / Localized dissipation near infinity

Cite this article

Download citation ▾
Pengfei Yao. Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation. Chinese Annals of Mathematics, Series B, 2010, 31(1): 59-70 DOI:10.1007/s11401-008-0421-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Barbu V., Lasiecka I., Rammaha A. M.. Blow-up of generalized solutions to wave equations with nonlinear degenerate damping and source terms. Indiana Univ. Math. J., 2007, 56(3): 995-1021

[2]

Cavalcanti M. M., Khemmoudj A., Medjden M.. Uniform stabilization of the damped Cauchy-Ventcel problem with variable coefficients and dynamic boundary conditions. J. Math. Anal. Appl., 2007, 328(2): 900-930

[3]

Chai S., Guo Y., Yao P. F.. Boundary feedback stabilization of shallow shells. SIAM J. Control Optim., 2003, 42(1): 239-259

[4]

Chai S., Liu K.. Observability inequalities for the transmission of shallow shells. Sys. Control Lett., 2006, 55(9): 726-735

[5]

Chai S., Liu K.. Boundary feedback stabilization of the transmission problem of Naghdi’s model. J. Math. Anal. Appl., 2006, 319(1): 199-214

[6]

Chai S., Yao P. F.. Observability inequalities for thin shells. Sci. China Ser. A, 2003, 46(3): 300-311

[7]

Feng S. J., Feng D. X.. Nonlinear internal damping of wave equations with variable coefficients. Acta Math. Sin., Engl. Ser., 2004, 20(6): 1057-1072

[8]

Gallot S., Hulin D., Lafontaine J.. Riemannian Geometry, 1990 2 Heidelberg: Springer-Verlag

[9]

Green R. E., Wu H.. C convex functions and manifolds of positive curvature. Acta Math., 1976, 137(1): 209-245

[10]

Gulliver, R., Lasiecka, I., Littman, W. et al, The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber, Geometric Methods in Inverse Problems and PDE Control, 73–181, IMA Vol. Math. Appl., 137, Springer-Verlag, New York, 2004.

[11]

Haraux A.. Stabilization of trajectories for some weakly damped hyperbolic equations. J. Diff. Eqs., 1985, 59(2): 145-154

[12]

Ho L. F.. Observabilité frontière de l’équation des ondes. C. R. Acad. Sci. Paris Sér. I Math., 1986, 302(12): 443-446

[13]

Lagnese J.. Control of wave processes with distributed controls supported on a subregion. SIAM J. Control Optim., 1983, 21(1): 68-85

[14]

Lasiecka I., Ong J.. Global solvability and uniform decays of solutions to quasilinear equation with nonlinear boundary dissipation. Commun. Part. Diff. Eqs., 1999, 24(11–12): 2069-2107

[15]

Lasiecka I., Triggiani R., Yao P. F.. Inverse/observability estimates for second-order hyperbolic equations with variable coefficients. J. Math. Anal. Appl., 1999, 235(1): 13-57

[16]

Liu K. S.. Locally distributed control and damping for the conservative system. SIAM J. Control Optim., 1997, 35(5): 1574-1590

[17]

Nakao M.. Energy decay for the linear and semilinear wave equation in exterior domains with some localized dissipations. Math. Z., 2001, 238(4): 781-797

[18]

Nakao M.. Decay of solutions of the wave equation with a local nonlinear dissipation. Math. Ann., 1996, 305(3): 403-417

[19]

Nakao M.. Global attractors for nonlinear wave equations with nonlinear dissipative terms. J. Diff. Eqs., 2006, 227(1): 204-229

[20]

Nakao M.. Existence of global solutions for the Kirchhoff-type quasilinear wave equation in exterior domains with a half-linear dissipation. Kyushu J. Math., 2004, 58(2): 373-391

[21]

Nakao M., Ono K.. Global existence to the Cauchy problem for the semilinear dissipative wave equation. Math. Z., 1993, 214(1): 325-342

[22]

Nicaise S., Pignotti C.. Internal and boundary observability estimates for the heterogeneous Maxwell’s system. Appl. Math. Optim., 2006, 54(1): 47-70

[23]

Nirenberg L.. On elliptic partial differential equations. Ann. Sc. Norm. Sup. Pisa, 1959, 13(2): 115-162

[24]

Morawetz C.. Time decay for nonlinear Klein-Gordon equations. Proc. Roy. Soc. London, 1968, 306A: 503-518

[25]

Rammaha M. A., Strei T. A.. Global existence and nonexistence for nonlinear wave equations with damping and source terms. Trans. Amer. Math. Soc., 2002, 354(9): 3621-3637

[26]

Slemrod M.. Weak asymptotic decay via a “related invariance principle” for a wave equation with nonlinear, nonmonotone damping. Proc. Roy. Soc. Edinburgh Sect. A, 1989, 113(1–2): 87-97

[27]

Tcheugoué Tébou L. R.. Stabilization of the wave equation with localized nonlinear damping. J. Diff. Eqs., 1998, 145(2): 502-524

[28]

Todorova G.. Cauchy problem for a nonlinear wave equation with nonlinear damping and source terms. Nonlinear Anal. Ser. A, 2000, 41(7–8): 891-905

[29]

Todorova G., Yordanov B.. The energy decay problem for wave equations with nonlinear dissipative terms in ℝn. Indiana Univ. Math. J., 2007, 56(1): 389-416

[30]

Todorova G., Yordanov B.. Critical exponent for a nonlinear wave equation with damping. J. Diff. Eqs., 2001, 174(2): 464-489

[31]

Wu H., Shen C. L., Yu Y. L.. An Introduction to Riemannian Geometry (in Chinese), 1989, Beijing: Beijing University Press

[32]

Yao P. F.. On the observability inequalities for the exact controllability of the wave equation with variable coefficients. SIAM J. Control Optim., 1999, 37(6): 1568-1599

[33]

Yao P. F.. Observatility inequality for shallow shells. SIAM J. Control Optim., 2000, 38(6): 1729-1756

[34]

Yao P. F.. Observability Inequalities for the Euler-Bernoulli Plate with Variable Coefficients, Contemporary Mathematics, 2000, Providence, RI: A. M. S. 383-406

[35]

Yao, P. F., Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., to appear. arXiv:math.AP/ 0603280

[36]

Yao P. F.. Global smooth solutions for the quasilinear wave equation with boundary dissipation. J. Diff. Eqs., 2007, 241(1): 62-93

[37]

Zhang Z. F., Yao P. F.. Global smooth solutions of the quasilinear wave equation with internal velocity feedbacks. SIAM J. Control Optim., 2008, 47(4): 2044-2077

AI Summary AI Mindmap
PDF

184

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/