Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation
Pengfei Yao
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 59 -70.
Energy decay for the Cauchy problem of the linear wave equation of variable coefficients with dissipation
Decay of the energy for the Cauchy problem of the wave equation of variable coefficients with a dissipation is considered. It is shown that whether a dissipation can be localized near infinity depends on the curvature properties of a Riemannian metric given by the variable coefficients. In particular, some criteria on curvature of the Riemannian manifold for a dissipation to be localized are given.
Wave equation / Riemannian metric / Localized dissipation near infinity
| [1] |
|
| [2] |
|
| [3] |
|
| [4] |
|
| [5] |
|
| [6] |
|
| [7] |
|
| [8] |
|
| [9] |
|
| [10] |
Gulliver, R., Lasiecka, I., Littman, W. et al, The case for differential geometry in the control of single and coupled PDEs: the structural acoustic chamber, Geometric Methods in Inverse Problems and PDE Control, 73–181, IMA Vol. Math. Appl., 137, Springer-Verlag, New York, 2004. |
| [11] |
|
| [12] |
|
| [13] |
|
| [14] |
|
| [15] |
|
| [16] |
|
| [17] |
|
| [18] |
|
| [19] |
|
| [20] |
|
| [21] |
|
| [22] |
|
| [23] |
|
| [24] |
|
| [25] |
|
| [26] |
|
| [27] |
|
| [28] |
|
| [29] |
|
| [30] |
|
| [31] |
|
| [32] |
|
| [33] |
|
| [34] |
|
| [35] |
Yao, P. F., Boundary controllability for the quasilinear wave equation, Appl. Math. Optim., to appear. arXiv:math.AP/ 0603280 |
| [36] |
|
| [37] |
|
/
| 〈 |
|
〉 |