Solutions and multiple solutions for p(x)-Laplacian equations with nonlinear boundary condition

Zifei Shen , Chenyin Qian

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 397 -412.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 397 -412. DOI: 10.1007/s11401-008-0395-0
Article

Solutions and multiple solutions for p(x)-Laplacian equations with nonlinear boundary condition

Author information +
History +
PDF

Abstract

The authors study the p(x)-Laplacian equations with nonlinear boundary condition. By using the variational method, under appropriate assumptions on the perturbation terms f 1(x, u), f 2(x, u) and h 1(x), h 2(x), such that the associated functional satisfies the “mountain pass lemma” and “fountain theorem” respectively, the existence and multiplicity of solutions are obtained. The discussion is based on the theory of variable exponent Lebesgue and Sobolev spaces.

Keywords

p(x)-Laplacian / Nonlinear boundary condition / (PS) condition / Mountain pass lemma / Fountain theorem

Cite this article

Download citation ▾
Zifei Shen, Chenyin Qian. Solutions and multiple solutions for p(x)-Laplacian equations with nonlinear boundary condition. Chinese Annals of Mathematics, Series B, 2009, 30(4): 397-412 DOI:10.1007/s11401-008-0395-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ru̇žička M.. Electrorheological Fulids Modeling and Mathematical Theory, 2000, Berlin: Springer-Verlag

[2]

Zhikov V. V.. Averaging of functionals of the calculus of variations and elasticity theory. Math. USSR. Izv., 1987, 29(1): 33-66

[3]

Diening L.. Theoretical and numerical results for electrorheological fluids, 2002, Germany: University of Frieburg

[4]

Acerbi E., Mingione G.. Regularity results for stationary electro-rheological fluids. Arch. Rational Mech. Anal., 2002, 164(3): 213-259

[5]

Acerbi E., Mingione G.. Regularity results for a class of functionals with non-standard growth. Arch. Rational Mech. Anal., 2001, 156(2): 121-140

[6]

Mihăailescu M., Răadulescu V.. A multiplicity result for a nonlinear degenerate problem arising in the theory of electrorheological fluids. Proc. Roy. Soc. London, Ser. A, 2006, 462: 2625-2641

[7]

Bonder J. F., Rossi J. D.. Existence results for the p-Laplacian with nonlinear boundary conditions. J. Math. Anal. Appl., 2001, 263(1): 195-223

[8]

Martínez S., Rossi J. D.. Weak solutions for the p-Laplacian with a nonlinear boundary condition at resonance. Electron. J. Diff. Eqs., 2003, 2003(27): 1-14

[9]

Zhao J. H., Zhao P. H.. Infinity many weak solutions for a p-Laplacian with nonlinear boundary conditions. Electron. J. Diff. Eqs., 2007, 2007(90): 1-14

[10]

Martínez S., Rossi J. D.. On the Fučik spectrum and a resonance problem for the p-Laplacian with a nonlinear boundary condition. Nonlinear Anal., 2004, 59(6): 813-848

[11]

Song S. Z., Tang C. L.. Resonance problems for the p-Laplacian with nonlinear boundary condition. Nonlinear Anal., 2006, 64(9): 2007-2021

[12]

St. Cîrstea F.-C., Rădalescu V.. Existence and nonexistence results for quasilinear problem with nonlinear boundary condition. J. Math. Anal. Appl., 2000, 244(1): 169-183

[13]

Pflüger K.. Existence and multiplicity of solutions to a p-Laplacian equation with nonlinear boundary condition. Electron. J. Diff. Eqs., 1998, 10: 1-13

[14]

Cîrstea F., Motreanu D., Radulescu V.. Weak solutions of quasilinear problems with nonlinear boundary condition. Nonlinear Anal., 2001, 43(5): 623-636

[15]

Kandilakis D. A., Lyberopoulos A. N.. Indefinite quasilinear elliptic problems with subcritical and supercritical nonlinearities on unbounded domains. J. Diff. Eqs., 2006, 230(1): 337-361

[16]

Mezei I. I., Varga C.. Multiplicity result for a double eigenvalue quasilinear problem on unbounded domain. Nonlinear Anal., 2008, 69(11): 4099-4105

[17]

Pflüger K.. Nonlinear boundary value problems in weighted Sobolev spaces. Nonlinear Anal., 1997, 30(2): 1263-1270

[18]

Deng S. G.. Eigenvalues of the p(x)-Laplacian Steklov problem. J. Math. Anal. Appl., 2008, 339(2): 925-937

[19]

Fan X. L.. Boundary trace embedding theorems for variable exponent Sobolev spaces. J. Math. Anal. Appl., 2008, 339(2): 1395-1412

[20]

Yao J. H.. Solutions for Neumann boundary value problem involving p(x)-Laplace operators. Nonlinear Anal., 2008, 68(5): 1271-1283

[21]

Liu W. L., Zhao P. H.. Existence of positive solutions for p(x)-Laplacian equations in unbounded domains. Nonlinear Anal., 2008, 69(10): 3358-3371

[22]

Fan X. L., Zhang Q. H.. Existence of solutions for p(x)-Laplacian Dirichlet problem. Nonlinear Anal., 2003, 52(8): 1843-1852

[23]

Fan X. L.. p(x)-Laplacian equations in RN with periodic data and nonperiodic perturbations. J. Math. Anal. Appl., 2008, 341(1): 103-119

[24]

Willem M.. Minimax Theorems, 1996, Basel: Birkhauser

[25]

Chang K. C.. Variational methods for nondifferentiable functionals and their applications to partial differntial equations. J. Math. Anal. Appl., 1981, 80: 102-129

[26]

Lou H. W.. On singular sets of local solutions to p-Laplace equations. Chin. Ann. Math., 2008, 29B(5): 521-530

AI Summary AI Mindmap
PDF

163

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/