PDF
Abstract
For a Riemann surface X of conformally finite type (g, n), let d T, d L and $d_{P_i } $ (i = 1, 2) be the Teichmüller metric, the length spectrum metric and Thurston’s pseudometrics on the Teichmüller space T(X), respectively. The authors get a description of the Teichmüller distance in terms of the Jenkins-Strebel differential lengths of simple closed curves. Using this result, by relatively short arguments, some comparisons between d T and d L, $d_{P_i } $ (i = 1, 2) on T ɛ(X) and T(X) are obtained, respectively. These comparisons improve a corresponding result of Li a little. As applications, the authors first get an alternative proof of the topological equivalence of d T to any one of d L, $d_{P_1 } $ and $d_{P_2 } $ on T(X). Second, a new proof of the completeness of the length spectrum metric from the viewpoint of Finsler geometry is given. Third, a simple proof of the following result of Liu-Papadopoulos is given: a sequence goes to infinity in T(X) with respect to d T if and only if it goes to infinity with respect to d L (as well as $d_{P_i } $ (i = 1, 2)).
Keywords
Length spectrum metric
/
Teichmüller metric
/
Thurston’s pseudo-metrics
Cite this article
Download citation ▾
Zongliang Sun, Lixin Liu.
Comparisons of metrics on Teichmüller space.
Chinese Annals of Mathematics, Series B, 2010, 31(1): 71-84 DOI:10.1007/s11401-008-0385-2
| [1] |
Sorvali T.. The boundary mapping induced by an isomorphism of covering groups. Ann. Acad. Sci. Fenn. Math., 1972, 526: 1-31
|
| [2] |
Thurston, W. P., Minimal stretch maps between hyperbolic surfaces, 1986, preprint. arXiv:math.GT/9801039
|
| [3] |
Papadopoulos A.. On Thurston’s boundary of Teichmüller space and the extension of earthquake. Topology Appl., 1991, 41(3): 147-177
|
| [4] |
Papadopoulos A., Théret G.. On the topology defined by Thurston’s asymmetric metric. Math. Proc. Cambridge Philos. Soc., 2007, 142(3): 487-496
|
| [5] |
Wolpert S.. The length spectra as Moduli for compact Riemann surfaces. Ann. of Math., 1979, 109(2): 323-351
|
| [6] |
Sorvali T.. On Teichmüller spaces of tori. Ann. Acad. Sci. Fenn. Math., 1975, 1: 7-11
|
| [7] |
Li Z.. Teichmüller metric and length spectrum of Riemann surface. Sci. China Ser. A, 1986, 29: 802-810
|
| [8] |
Liu L. X.. On the length spectrums of non-compact Riemann surface. Ann. Acad. Sci. Fenn. Math., 1999, 24: 11-22
|
| [9] |
Shiga H.. On a distance defined by the length spectrum on Teichmüller space. Ann. Acad. Sci. Fenn. Math., 2003, 28: 315-326
|
| [10] |
Kinjo, E., Teichmüller metric and length spectrum metric (in Japanese), Master Thesis, Tokyo Institute of Technology, 2008.
|
| [11] |
Liu L. X.. On the metrics of length spectrum in Teichmüller spaces. Chin. Ann. Math., 2001, 22A(1): 19-26
|
| [12] |
Liu L. X., Sun Z. L., Wei H. B.. Topological equivalence of metrics in Teichmüller space. Ann. Acad. Sci. Fenn. Math., 2008, 33: 159-170
|
| [13] |
Liu L. X.. On the non-isometry of Thurston’s pseudometric. Acta Sci. Natur. Univ. Sunyatseni, 2000, 39(6): 6-9
|
| [14] |
Liu L. X.. On non-quasiisometry of the Teichmüller metric and Thurston’s pseudometric (in Chinese). Chin. Ann. Math., 1999, 20A(1): 31-36
|
| [15] |
Li Z.. Length spectrums of Riemann surfaces and the Teichmüller metric. Bull. London Math. Soc., 2003, 35(2): 247-254
|
| [16] |
Choi Y.-E., Rafi K.. Comparison between Teichmüller and Lipschitz metrics. J. London Math. Soc., 2007, 76(3): 739-756
|
| [17] |
Liu, L. X. and Papadopoulos, A., Some metrics on Teichmüller spaces of surfaces of infinite type, Trans. Amer. Math. Soc., to appear. arXiv:math/GT 0808.0870v1
|
| [18] |
Gardiner F. P., Masur H.. Extremal length geometry of Teichmüller space. Complex Variables Theory Appl., 1991, 16(2–3): 209-237
|
| [19] |
Kerckhoff S. P.. The asymptotic geometry of Teichmüller space. Topology, 1980, 19(1): 23-41
|
| [20] |
Strebel K.. Quadratic Differentials, 1984, Berlin: Springer-Verlag
|
| [21] |
Thurston W. P.. The Geometry and Topology of 3-Manifolds, 1982, Princeton: Princeton University Press
|
| [22] |
Hubbard J., Masur H.. Quadratic differentials and foliations. Acta Math., 1979, 142(1): 221-274
|
| [23] |
Wolf M.. On realizing measured foliations via quadratic differentials of harmonic maps to R-trees. J. d’Analyse Math., 1996, 68(1): 107-120
|
| [24] |
Maskit B.. Comparison of hyperbolic and extremal lengths. Ann. Acad. Sci. Fenn. Math., 1985, 10: 381-386
|
| [25] |
Bers L.. Inequalities for finitely generated Kleinian groups. J. d’Analyse Math., 1967, 18(1): 23-41
|
| [26] |
Chern, S. S., Chen, W. H. and Lam, K. S., Lectures on Differential Geometry, Series on University Mathematics, 1, World Scientific, Singapore, 1999.
|
| [27] |
Abikoff W.. The Real Analytic Theory of Teichmüller Space, 1990, Berlin: Springer- Verlag
|
| [28] |
Gardiner F. P.. Teichmüller theory and quadratic differentials, 1987, New York: John Wiley and Sons
|
| [29] |
Li Z.. Quasiconformal Mapping and Its Applications in the Theory of Riemann Surfaces (in Chinese), 1986, Beijing: Science Press
|
| [30] |
Liu L. X.. Topologic structures of Teichmüller space. Acta Sci. Natur. Univ. Sunyatseni, 2005, 44(1): 9-12
|
| [31] |
Minsky Y. N.. Harmonic maps, length, and energy in Teichmüller space. J. Diff. Geom., 1992, 35(1): 151-217
|