Generalized Liouville theorem in nonnegatively curved Alexandrov spaces

Bobo Hua

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 111 -128.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 111 -128. DOI: 10.1007/s11401-008-0376-3
Article

Generalized Liouville theorem in nonnegatively curved Alexandrov spaces

Author information +
History +
PDF

Abstract

In this paper, Yau’s conjecture on harmonic functions in Riemannian manifolds is generalized to Alexandrov spaces. It is proved that the space of harmonic functions with polynomial growth of a fixed rate is finite dimensional and strong Liouville theorem holds in Alexandrov spaces with nonnegative curvature.

Keywords

Alexandrov space / Harmonic function / Harnack inequality

Cite this article

Download citation ▾
Bobo Hua. Generalized Liouville theorem in nonnegatively curved Alexandrov spaces. Chinese Annals of Mathematics, Series B, 2009, 30(2): 111-128 DOI:10.1007/s11401-008-0376-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burago D., Burago Yu., Ivanov S.. A Course in Metric Geometry, 2001, Providence, RI: A. M. S.

[2]

Burago Yu., Gromov M., Perelman G.. A. D. Aleksandrov spaces with curvatures bounded below. Russ. Math. Surv., 1992, 47: 1-58

[3]

Cheeger J.. Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal., 1999, 9(3): 428-517

[4]

Colding T. H., Minicozzi W. P. II Harmonic functions on manifolds. Ann. of Math. (2), 1997, 146(3): 725-747

[5]

Colding T. H., Minicozzi W. P. II Weyl type bounds for harmonic functions. Invent. Math., 1998, 131: 257-298

[6]

Donnelly H., Fefferman C.. Nodal domains and growth of harmonic functions on noncompact manifolds. J. Geom. Anal., 1992, 2(1): 79-93

[7]

Hajlasz P., Koskela P.. Sobolev met Poincaré. Mem. Amer. Math. Soc., 2000, 145(688): 1-101

[8]

Han Q., Lin F. H.. Elliptic Partial Differential Equations, 1997, Providence, RI: A. M. S.

[9]

Kuwae K., Machigashira Y., Shioya T.. Sobolev spaces, Laplacian, and heat kernel on Alexandrov spaces. Math. Z., 2001, 238(2): 269-316

[10]

Korevaar N., Schoen R.. Global existence theorems for harmonic maps to non-locally compact spaces. Comm. Anal. Geom., 1997, 5(2): 333-387

[11]

Li P.. Harmonic sections of polynomial growth. Math. Res. Lett., 1997, 4(1): 35-44

[12]

Li P., Tam L. F.. Complete surfaces with finite total curvature. J. Diff. Geom., 1991, 33(1): 139-168

[13]

Moser J.. A new proof of de Giorgi’s theorem concerning the regularity problem for elliptic differential equations. Comm. Pure Appl. Math., 1960, 13: 457-468

[14]

Perelman, G., Alexandrov spaces with curvature bounded from below II, preprint.

[15]

Petrunin, A., Subharmonic functions on Alexandrov space, preprint.

[16]

Saloff-Coste L.. Aspects of Sobolev-Type Inequalities, 2002, Cambridge: Cambridge University Press

[17]

Yau S. T.. Harmonic functions on complete Riemannian manifolds. Comm. Pure Appl. Math., 1975, 28: 201-228

[18]

Yau S. T.. Nonlinear analysis in geometry. Enseign. Math., 1987, 33(2): 109-158

[19]

Yau, S. T., Differential Geometry: Partial Differential Equations on Manifolds, Proc. of Symposia in Pure Mathematics, R. Greene and S. T. Yau (eds.), Vol. 54, 1993.

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/