Gap property of Bi-Lipschitz constants of Bi-Lipschitz automorphisms on self-similar sets

Lifeng Xi , Ying Xiong

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 211 -218.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 211 -218. DOI: 10.1007/s11401-008-0350-0
Article

Gap property of Bi-Lipschitz constants of Bi-Lipschitz automorphisms on self-similar sets

Author information +
History +
PDF

Abstract

For a given self-similar set E ⊂ ℝ d satisfying the strong separation condition, let Aut(E) be the set of all bi-Lipschitz automorphisms on E. The authors prove that “f ∈ Aut(E): blip(f) = 1” is a finite group, and the gap property of bi-Lipschitz constants holds, i.e., inf“blip(f) ≠ 1: f ∈ Aut(E)” > 1, where lip(g) = and blip(g) = max(lip(g), lip(g −1)).

Keywords

Fractal / Bi-Lipschitz automorphism / Self-similar set

Cite this article

Download citation ▾
Lifeng Xi, Ying Xiong. Gap property of Bi-Lipschitz constants of Bi-Lipschitz automorphisms on self-similar sets. Chinese Annals of Mathematics, Series B, 2010, 31(2): 211-218 DOI:10.1007/s11401-008-0350-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cooper D., Pignatro T.. On the shape of Cantor set. J. Diff. Geom., 1988, 28: 203-221

[2]

David G., Semmes S.. Fractured Fractals and Broken Dreams: Self-similar Geometry through Metric and Measure, 1997, Oxford: Oxford University Press

[3]

Falconer K. J.. Fractal Geometry-Mathematical Foundation and Applications, 1991, New York: John Wiley

[4]

Falconer K. J., Marsh D. T.. Classification of quasi-circles by Hausdorff dimension. Nonlinearity, 1989, 2: 489-493

[5]

Falconer K. J., Marsh D. T.. On the Lipschitz equivalence of Cantor sets. Mathematika, 1992, 39: 223-233

[6]

Fan S., Guo Q. L., Xi L. F.. Lipschitz constant for bi-Lipschitz automorphism of self-similar fractal. Prog. Nat. Sci., 2006, 16(4): 415-420

[7]

Guo Q. L., Wu M., Xi L. F.. Lipschitz constant for bi-Lipschitz automorphism on Moran-like sets. J. Math. Anal. Appl., 2007, 336: 937-952

[8]

Hutchinson J. E.. Fractals and self-similarity. Indiana Univ. Math. J., 1981, 30: 713-747

[9]

Lyapina M. S.. On the Lipschitz constant for a nonisometric bi-Lipschitz transformation of Cantor set. J. Math. Sci., 2004, 120(2): 1109-1116

[10]

Niu M., Xi L. F.. The Hausdorff dimension of sections. Chin. Ann. Math., 2007, 28B(2): 187-194

[11]

Wen Z. Y.. Mathematical Foundation of Fractal Geometry (in Chinese), 2000, Shanghai: Shanghai Scientific Technological Education Publishing

[12]

Xi L. F.. Porosity of self-affine sets. Chin. Ann. Math., 2008, 29B(3): 333-340

[13]

Xi L. F.. Lipschitz equivalence of self-conformal. J. London Math. Soc., 2004, 70(2): 369-382

[14]

Xi L. F.. Quasi Lipschitz equivalence of self-conformal sets. Israel J. Math., 2007, 160: 1-21

[15]

Xiong Y., Wang L. S., Xi L. F.. Sharp Lipschitz constant of bi-Lipschitz automorphism on Cantor set. Sci. China Ser. A, 2009, 52(4): 709-719

AI Summary AI Mindmap
PDF

101

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/