Invariant metrics and Laplacians on Siegel-Jacobi disk

Jae-Hyun Yang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 85 -100.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 85 -100. DOI: 10.1007/s11401-008-0348-7
Article

Invariant metrics and Laplacians on Siegel-Jacobi disk

Author information +
History +
PDF

Abstract

Let $\mathbb{D}_n $ be the generalized unit disk of degree n. In this paper, Riemannian metrics on the Siegel-Jacobi disk $\mathbb{D}_n $ × ℂ(m,n) which are invariant under the natural action of the Jacobi group are found explicitly and the Laplacians of these invariant metrics are computed explicitly. These are expressed in terms of the trace form.

Keywords

Invariant metrics / Siegel-Jacobi disk / Partial Cayley transform

Cite this article

Download citation ▾
Jae-Hyun Yang. Invariant metrics and Laplacians on Siegel-Jacobi disk. Chinese Annals of Mathematics, Series B, 2010, 31(1): 85-100 DOI:10.1007/s11401-008-0348-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Berndt, R. and Schmidt, R., Elements of the Representation Theory of the Jacobi Group, Birkhäuser, Basel, 1998.

[2]

Eichler M., Zagier D.. The Theory of Jacobi Forms, Progress in Mathematics, 1985, Basel: Birkhäuser

[3]

Helgason S.. Groups and Geometric Analysis, 1984, New York: Academic Press

[4]

Maass H.. Die differentialgleichungen in der theorie der Siegelschen modulfunktionen. Math. Ann., 1953, 126: 44-68

[5]

Satake I.. Algebraic Structures of Symmetric Domains, 1980, Princeton: Princeton University Press

[6]

Siegel C. L.. Symplectic geometry. Amer. J. Math., 1943, 65: 1-86

[7]

Yang J.-H.. The Siegel-Jacobi operator. Abh. Math. Sem. Univ. Hamburg, 1993, 63: 135-146

[8]

Yang J.-H.. Singular Jacobi Forms. Trans. Amer. Math. Soc., 1995, 347(6): 2041-2049

[9]

Yang J.-H.. Construction of vector valued modular forms from Jacobi forms. Can. J. Math., 1995, 47(6): 1329-1339

[10]

Yang J.-H.. The method of orbits for real Lie groups. Kyungpook Math. J., 2002, 42(2): 199-272

[11]

Yang J.-H.. Invariant metrics and Laplacians on Siegel-Jacobi space. J. Number Theory, 2007, 127: 83-102

[12]

Yang J.-H.. A partial Cayley transform for Siegel-Jacobi disk. J. Korean Math. Soc., 2008, 45(3): 781-794

[13]

Yang J.-H.. A note on a fundamental domain for Siegel-Jacobi space. Houston J. Math., 2006, 32(3): 701-712

[14]

Yang, J.-H. A note on invariant differential operators on Siegel-Jacobi space, 2006. arXiv:math.NT/0611388

[15]

Ziegler C.. Jacobi Forms of Higher Degree. Abh. Math. Sem. Hamburg, 1989, 59: 191-224

AI Summary AI Mindmap
PDF

194

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/