Generalized Green correspondence of graded modules

Salah El-Din S. Hussein

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 413 -420.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 413 -420. DOI: 10.1007/s11401-008-0347-8
Article

Generalized Green correspondence of graded modules

Author information +
History +
PDF

Abstract

The author studies the Green correspondence and quasi-Green correspondence for indecomposable modules over strongly graded rings. The motivation is to investigate the influence of induction and restriction processes on indecomposability of graded modules.

Keywords

Vertices / Sources / Graded rings / Graded modules / Green correspondence

Cite this article

Download citation ▾
Salah El-Din S. Hussein. Generalized Green correspondence of graded modules. Chinese Annals of Mathematics, Series B, 2009, 30(4): 413-420 DOI:10.1007/s11401-008-0347-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Burry D. W.. A strengthened theory of vertices and sources. J. Algebra, 1979, 59(2): 330-344

[2]

Curtis C. W., Reiner I.. Methods of Representation Theory, Vol. I, 1981, New York: John Wiley

[3]

Dade E. C.. Group-graded rings and modules. Math. Z., 1980, 174(3): 241-262

[4]

Green J. A.. On the indecomposable representations of a finite group. Math. Z., 1958, 70(1): 430-445

[5]

Green J. A.. A transfer theorem for modular representations. J. Algebra, 1964, 1(1): 73-84

[6]

Héthelyi L., Szöke M., Lux K.. The restriction of indecomposable modules for group algebras and the quasi-Green correspondence. Comm. Algebra, 1998, 26(1): 83-95

[7]

Héthelyi L., Szöke M.. Green correspondence and its generalizations. Comm. Algebra, 2000, 28(9): 4463-4479

[8]

Hussein S. S.. Induced and restricted modules over graded rings. Proc. Math. Phys. Soc. Egypt, 2001, 76: 1-13

[9]

Hussein, S. S., Vertices and sources of indecomposable graded modules, J. Egyptian Math. Soc., to appear.

[10]

Landrock P., Michler G. O.. Block structure of the smallest Janko group. Math. Ann., 1978, 232(3): 205-238

[11]

Năstăsescu C., van Oystaeyen F.. Graded Ring Theory, Mathematical Library, 1982, Amsterdam: North-Holand 28

[12]

Năstăsescu C., van Oystaeyen F.. Dimensions of Ring Theory, 1987, Boston: D. Reidel Publ. Co.

AI Summary AI Mindmap
PDF

143

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/