New monotonicity formulae for semi-linear elliptic and parabolic systems

Li Ma , Xianfa Song , Lin Zhao

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 411 -432.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (3) : 411 -432. DOI: 10.1007/s11401-008-0282-8
Article

New monotonicity formulae for semi-linear elliptic and parabolic systems

Author information +
History +
PDF

Abstract

The authors establish a general monotonicity formula for the following elliptic system $\Delta u_i + f_i \left( {x,u_1 , \cdots ,u_m } \right) = 0 in \Omega $ where Ω ⊂⊂ ℝ n is a regular domain, (f i(x, u 1, ..., u m)) = ∇$\vec u$ F(x, $\vec u$), F(x, $\vec u$) is a given smooth function of x ∈ ℝ n and $\vec u$ = (u 1, ..., u m) ∈ ℝ m. The system comes from understanding the stationary case of Ginzburg-Landau model. A new monotonicity formula is also set up for the following parabolic system $\partial _t u_i - \Delta u_i - f_i \left( {x,u_1 , \cdots ,u_m } \right) = 0 in \left( {t_1 ,t_2 } \right) \times \mathbb{R}^n $, where t 1 < t 2 are two constants, (f i(x, $\vec u$)), is given as above. The new monotonicity formulae are focused more attention on the monotonicity of nonlinear terms. The new point of the results is that an index β is introduced to measure the monotonicity of the nonlinear terms in the problems. The index β in the study of monotonicity formulae is useful in understanding the behavior of blow-up sequences of solutions. Another new feature is that the previous monotonicity formulae are extended to nonhomogeneous nonlinearities. As applications, the Ginzburg-Landau model and some different generalizations to the free boundary problems are studied.

Keywords

Elliptic systems / Parabolic system / Monotonicity formula / Ginzburg-Landau model

Cite this article

Download citation ▾
Li Ma, Xianfa Song, Lin Zhao. New monotonicity formulae for semi-linear elliptic and parabolic systems. Chinese Annals of Mathematics, Series B, 2010, 31(3): 411-432 DOI:10.1007/s11401-008-0282-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Allard W. K.. On the first variation of a varifold. Ann. of Math., 1972, 95: 417-491

[2]

Alt H. W., Caffarelli L. A., Friedman A.. Variational problems with two phases and their free boundaries. Trans. Amer. Math. Soc., 1984, 282: 431-462

[3]

Bourgain J., Brezis H., Mironescu P.. H ½ maps with values into the circle: minimal connections, lifting, and the Ginzburg-Landau equation. Publ. Math. Inst. Hautes Études Sci., 2004, 99: 1-115

[4]

Caffarelli L. A.. Lions J. L., Baiocchi C.. A monotonicity formula for heat functions in disjoint domains, Boundary Value Problems for Partial Differential Equations and Applications, 1993, Paris: Masson 53-60

[5]

Caffarelli L. A., Jerison D., Kenig C. E.. Some new monotonicity theorems with appliacations to free boundary problems. Ann. of Math., 2002, 155: 369-402

[6]

Caffarelli L. A., Kenig C. E.. Gradient estimates for variable coefficient parabolic equations and singular perturbation problems. Amer. J. Math., 1998, 120: 391-439

[7]

Caffarelli L. A., Karp L., Shahgholian H.. Regularity of a free boundary with application to the Pompeiu problem. Ann. of Math., 2000, 151: 269-292

[8]

Caffarelli L. A., Lin F. H.. Singularly perturbed elliptic systems and multi-valued harmonic functions with free boundaries. J. Amer. Math. Soc., 2008, 21(3): 847-862

[9]

Caffarelli L. A., Petrosyan A., Shahgholian H.. Regularity of a free boundary in parabolic potential theory. J. Amer. Math. Soc., 2004, 17: 827-869

[10]

Ecker K.. A local monotonicity formula for mean curvature flow. Ann. of Math., 2001, 154: 503-523

[11]

Ecker K.. Local monotonicity formulas for some nonlinear diffusion equations. Calc. Var. Partial Differential Equations, 2005, 23(1): 67-81

[12]

Fleming W. H.. On the oriented Plateau problem. Rend. Circ. Mat. Palermo, 1962, 11(2): 69-90

[13]

Friedman A.. Partial Differential Equations, 1969, New York: Holt, Rinehart and Winston, Inc.

[14]

Giga Y., Kohn R. V.. Asymptotically self-similar blow-up of semilinear heat equations. Comm. Pure Appl. Math., 1985, 38: 297-319

[15]

Hamilton R. S.. Monotonicity formulas for parabolic flows on manifolds. Comm. Anal. Geom., 1993, 1: 127-137

[16]

Hamilton R. S.. The formation of singularities in the Ricci flow, Survey of Differential Geometry, 1995, 2: 7-136

[17]

Huisken G.. Asymptotic behaviour for singularities of the mean curvature flow. J. Differential Geom., 1990, 31: 285-299

[18]

Ladyzenskaja O. A., Solonnikov V. A., Ural’ceva N. N.. Linear and quasi-linear equations of parabolic type. Transl. Math. Monographs, Vol. 23, 1988, Providence, RI: A. M. S.

[19]

Lin F. H.. On regularity and singularity of free boundaries in obstacle problems. Chin. Ann. Math., 2009, 30B(5): 645-652

[20]

Lin F. H., Riviere T.. Complex Ginzburg-Landau equations in high dimensions and codimension two area minimizing currents. J. Eur. Math. Soc., 1999, 1: 237-311

[21]

Ma L., Su N.. Obstacle problem in scalar Ginzburg-Landau equation. J. Partial Differential Equations, 2004, 17: 49-56

[22]

Pacard F.. Partial regularity for weak solutions of a nonlinear elliptic equation. Manuscripta Math., 1993, 79: 161-172

[23]

Perelman, G., The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159.

[24]

Price P.. A monotonicity formula for Yang-Mills fields. Manuscripta Math., 1983, 43: 131-166

[25]

Riviere T.. Line vortices in the U(1)-Higgs model. ESAIM Control Optim. Calc. Var., 1996, 1: 77-167

[26]

Schoen R. M.. Chern S. S.. Analytic aspects of the harmonic map problem, Seminar on Nonlinear Partial Differential Equations, 1984, New York: Springer-Verlag 321-358

[27]

Simon L. M.. Lectures on Geometric Measure Theory, 1983, Canberra: Australian National University

[28]

Struwe M.. On the evolution of harmonic maps in higher dimensions. J. Differential Geom., 1988, 28: 485-502

[29]

Weiss G. S.. Partial regularity for a minimum problem with free boundary. J. Geom. Anal., 1999, 9(2): 317-326

[30]

Weiss G. S.. Partial regularity for weak solution of an elliptic free boundary problem. Comm. Part. Diff. Eqs., 1998, 23: 439-455

[31]

Weiss G. S.. A homogeneity improvement approach to the obstacle problem. Invent. Math., 1999, 138: 23-50

[32]

Weiss G. S.. Self-similar blow-up and Hausdorff dimension estimates for a class of parabolic free boundary problems. SIAM J. Math. Anal., 1999, 30: 623-644

AI Summary AI Mindmap
PDF

177

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/