Carleman estimates for parabolic equations with nonhomogeneous boundary conditions

Oleg Yu Imanuvilov , Jean Pierre Puel , Masahiro Yamamoto

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 333 -378.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 333 -378. DOI: 10.1007/s11401-008-0280-x
Article

Carleman estimates for parabolic equations with nonhomogeneous boundary conditions

Author information +
History +
PDF

Abstract

The authors prove a new Carleman estimate for general linear second order parabolic equation with nonhomogeneous boundary conditions. On the basis of this estimate, improved Carleman estimates for the Stokes system and for a system of parabolic equations with a penalty term are obtained. This system can be viewed as an approximation of the Stokes system.

Keywords

Controllability / Parabolic equations / Carleman estimates

Cite this article

Download citation ▾
Oleg Yu Imanuvilov, Jean Pierre Puel, Masahiro Yamamoto. Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chinese Annals of Mathematics, Series B, 2009, 30(4): 333-378 DOI:10.1007/s11401-008-0280-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Carleman T.. Sur un problème d’unicité pour les systèmes d’équations aux dérivées partielles à deux variables indépendentes. Ark. Mat. Astr. Fys., 1939, 26B: 1-9

[2]

Dubrovin B. A., Fomenko A. T., Novikov S. P.. Modern Geometry: Methods and Applications, Part II. The Geometry and Topology of Manifolds, 1985, Berlin: Springer-Verlag

[3]

Evans L.. Partial Differential Equations. Graduate Studies in Mathematics, 1998, Providence, RI: A. M. S.

[4]

Fernandez-Cara E., Guerrero S., Imanuvilov O., Puel J. P.. Some controllability results for the N-dimensional Navier-Stokes and Boussinesq system, SIAM J. Cont. Optim., 2006, 45: 146-173

[5]

Fernandez-Cara E., Guerrero S., Imanuvilov O., Puel J. P.. Local exact controllability of the Navier-Stokes system, J. Math. Pures Appl., 2005, 83(12): 1501-1542

[6]

Fabre C., Lebeau G.. Prolongement unique des solutions de l’équation de Stokes, Comm. Part. Diff. Eqs., 1996, 21: 573-596

[7]

Hörmander L.. Linear Partial Differential Operators, 1963, Berlin: Springer-Verlag

[8]

Hörmander L.. The spectral function of elliptic operators. Acta Math., 1968, 121: 193-218

[9]

Imanuvilov O.. Controllability of parabolic equations. Mat. Sb., 1995, 186(6): 109-132

[10]

Imanuvilov O.. On exact controllability for the Navier-Stokes equations, ESAIM Control Optim. Cale. Var., 1998, 3: 97-131

[11]

Imanuvilov O.. Remarks on exact controllability for Navier-Stokes equations, ESAIM Control Optim. Cale. Var., 2001, 6: 39-72

[12]

Imanuvilov O., Puel J. P.. Global Carleman estimates for weak solutions of elliptic nonhomogeneous Dirichlet problems, Int. Math. Res. Not., 2003, 16: 883-913

[13]

Imanuvilov O., Yamamoto M.. Carleman inequalities for parabolic equations in Sobolev spaces of negative order and exact controllability for semilinear parabolic equations, Publ. Res. Inst. Math. Sci., 2003, 39: 227-274

[14]

Lions J. L.. Optimal Control of Systems Governed by Partial Differential Equations, 1971, Berlin: Springer-Verlag

[15]

Stein E. M.. Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, 1993, New Jersey: Princeton University Press

[16]

Taylor M.. Pseudodifferential Operators and Nonlinear PDE, 1991, Berlin: Birkhäuser

[17]

Taylor M.. Pseudodifferential Operators, 1981, New Jersey: Princeton University Press

[18]

Temam R.. Navier-Stokes Equatons, 2001, Providence, RI: A. M. S.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/