Classification of quasifinite modules with nonzero central charges for EALAs of type A with coordinates in quantum torus

Rencai Lü

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 129 -138.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 129 -138. DOI: 10.1007/s11401-008-0253-0
Article

Classification of quasifinite modules with nonzero central charges for EALAs of type A with coordinates in quantum torus

Author information +
History +
PDF

Abstract

The author first constructs a Lie algebra $\mathfrak{L}: = \mathfrak{L}(q,w_d )$ from rank 3 quantum torus, which is isomorphic to the core of EALAs of type A d−1 with coordinates in quantum torus C q d, and then gives the necessary and sufficient conditions for the highest weight modules to be quasifinite. Finally the irreducible ℤ-graded quasifinite $\mathfrak{L}$-modules with nonzero central charges are classified.

Keywords

Core of EALAs / Graded modules / Quasifinite module / Highest weight module / Quantum torus

Cite this article

Download citation ▾
Rencai Lü. Classification of quasifinite modules with nonzero central charges for EALAs of type A with coordinates in quantum torus. Chinese Annals of Mathematics, Series B, 2009, 30(2): 129-138 DOI:10.1007/s11401-008-0253-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoegh-Krohn R., Torresani B.. Classification and construction of quasi-simple Lie algebra. J. Funct. Anal., 1990, 89: 106-136

[2]

Berman S., Gao Y., Krylyuk Y.. Quantum tori and the structure of elliptic quasi-simple Lie algebras. J. Funct. Anal., 1996, 135: 339-389

[3]

Gao Y., Zeng Z.. Hermitian representations of the extended affine Lie algebra $\widetilde{gl_2 (C_\mathcal{Q} )}$. Adv. Math., 2006, 207: 244-265

[4]

Moody R. V., Rao S. E., Yokonuma T.. Toroidal Lie algebras and vertex representations. Geom. Dedecata, 1990, 35: 283-307

[5]

Yamada H.. Extended affine Lie algebras and their vertex representations. Publ. Res. Inst. Math. Sci., 1989, 25: 587-603

[6]

Berman S., Cox B.. Enveloping algebras and representations of toroidal Lie algebras. Pacific J. Math., 1996, 165: 339-389

[7]

Berman S., Gao Y., Krylyuk Y. The alternative torus and the structure of elliptic quasi-simple Lie algebras of type A 2. Trans. Amer. Math. Soc., 1995, 347: 4315-4363

[8]

Manin Y. I.. Topics in Noncommutative Geometry, 1991, Princeton: Princeton University Press

[9]

Kirkman E., Procesi C., Small L.. A q-analog for the Virasoro algebra. Comm. Algebra, 1994, 22: 3755-3774

[10]

Berman S., Szmigielski J.. Principal realization for extended affine Lie algebra of type sl2 with coordinates in a simple quantum torus with two variables. Contemp. Math., 1999, 248: 39-67

[11]

Gao Y.. Vertex operators arising from the homogeneous realization for $\widehat{gl}_N $. Comm. Math. Phys., 2000, 211: 745-777

[12]

Gao Y.. Representations of extended affine Lie algebras coordinatized by certain quantum tori. Comp. Math., 2000, 123: 1-25

[13]

Eswara Rao S.. A class of integrable modules for the core of EALA coordinatized by quantum tori. J. Algebra, 2004, 275: 59-74

[14]

Eswara Rao S.. Unitary modules for EALAs coordinatized by a quantum torus. Comm. Algebra, 2003, 31: 2245-2256

[15]

Zhang H. C., Zhao K. M.. Representations of the Virasoro-like Lie algebras and its q-analog. Comm. Algebra, 1996, 24: 4361-4372

[16]

Jiang C. P., Meng D. J.. The derivation algebra of the associative algebra C q[X, Y,X 1, Y 1]. Comm. Algebra, 1998, 26: 1723-1736

[17]

Eswara Rao S., Zhao K. M.. Highest weight irreducible representations of rank 2 quantum tori. Math. Res. Lett., 2004, 11: 615-628

[18]

Lin W. Q., Tan S. B.. Nonzero level Harish-Chandra modules over the q-analog of the Virasoro-like algebra. J. Algebra, 2006, 297: 254-272

[19]

Herstein I. N.. On the Lie and Jordan rings of a simple associative ring. Amer. J. Math., 1955, 77: 279-285

[20]

Zhao K. M.. The q-Virasoro-like algebra. J. Algebra, 1997, 188(2): 506-512

[21]

Billig Y., Zhao K. M.. Weight modules over exp-polynomial Lie algebras. J. Pure Appl. Algebra, 2004, 191: 23-42

[22]

Lü, R. C. and Zhao, K. M., Verma modules over quantum torus Lie algebras, Canadian J. Math., to appear.

[23]

Lin, W. Q. and Su, Y. C., Classification of quasifinite representations with nonzero central charges for type A 1 EALA with coordinates in quantum torus, preprint, 2007. arXiv:0705.4539v1

AI Summary AI Mindmap
PDF

88

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/