Stochastic fractional Anderson models with fractional noises

Yiming Jiang , Kehua Shi , Yongjin Wang

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 101 -118.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 101 -118. DOI: 10.1007/s11401-008-0244-1
Article

Stochastic fractional Anderson models with fractional noises

Author information +
History +
PDF

Abstract

The authors are concerned with a class of one-dimensional stochastic Anderson models with double-parameter fractional noises, whose differential operators are fractional. A unique solution for the model in some appropriate Hilbert space is constructed. Moreover, the Lyapunov exponent of the solution is estimated, and its Hölder continuity is studied. On the other hand, the absolute continuity of the solution is also discussed.

Keywords

Anderson models / Fractional noises / Lyapunov exponent / Hölder continuity / Absolute continuity

Cite this article

Download citation ▾
Yiming Jiang, Kehua Shi, Yongjin Wang. Stochastic fractional Anderson models with fractional noises. Chinese Annals of Mathematics, Series B, 2010, 31(1): 101-118 DOI:10.1007/s11401-008-0244-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Azerad P., Mellouk M.. On a stochastic partial differential equation with non-local diffusion. Potential Anal., 2007, 27(2): 183-197

[2]

Bo L. J., Jiang Y. M., Wang Y. J.. On a class of stochastic Anderson models with fractional noises. Stoch. Anal. Appl., 2008, 26(2): 256-273

[3]

Bo L. J., Shi K. H., Wang Y. J.. On a nonlocal stochastic Kuramoto-Sivashinsky equation with jumps. Stoch. Dyn., 2007, 7(4): 439-457

[4]

Bo L. J., Jiang Y. M., Wang Y. J.. Stochastic Cahn-Hilliard equation with fractional noise. Stoch. Dyn., 2008, 8(4): 643-665

[5]

Bo L. J., Wang Y. J.. Stochatic Cahn-Hilliard partial differential equations with Lévy spacetime noises. Stoch. Dyn., 2006, 6(2): 229-244

[6]

Cardon-Weber C.. Cahn-Hilliard stochastic equation: existence of the solution and of its density. Bernoulli, 2001, 7(5): 777-816

[7]

Dasgupta A., Kallianpur G.. Chaos decomposition of multiple fractional integrals and applications. Prob. Theory Relat. Fields, 1999, 115(4): 527-548

[8]

Debbi L., Dozzi M.. On the solutions of nonlinear stochastic fractional partial differential equations in one spatial dimension. Stoch. Proc. Appl., 2005, 115(11): 1764-1781

[9]

Eidelman S. D., Zhitarashu N. V.. Parabolic Boundary Value Problems, 1998, Basel: Birkhäuser

[10]

Hu Y. Z.. Heat equations with fractional white noise potentials. Appl. Math. Optim., 2001, 43(3): 221-243

[11]

Hu Y. Z.. Chaos expansion of heat equations with white noise potentials. Potential Anal., 2002, 16(1): 45-66

[12]

Jiang, Y. M., Shi, K. H. and Wang, Y. J., On a class of stochastic fractional partial differential equations with fractional noises, preprint, 2008.

[13]

Le Mehaute A., Machado T., Trigeassou J. C., Sabatier J.. Fractional Differentiation and Its Applications. Proceedings of the First IFAC Workshop, Vol. 2004-1, 2004, Bordeaux, France: International Federation of Automatic Control, ENSEIRB

[14]

Mann J. A., Woyczynski W. A.. Growing fractal interfaces in the presence of self-similar hopping surface diffusion. Phys. A, 2001, 291(1–4): 159-183

[15]

Mémin J., Mishura Y., Valkeila E.. Inequalities for moments of Wiener integrals with respect to a fractional Brownian motion. Stat. Prob. Lett., 2001, 51(2): 197-206

[16]

Metzler R., Klafter J.. The random walk’s guide to anomalous diffusion: a fractionl dynamics approach. Phys. Rep., 2000, 339: 1-77

[17]

Mueller C.. Long-time existence for the heat equation with a noise term. Prob. Theory Relat. Fields, 1991, 90(4): 505-517

[18]

Mueller C., Tribe R.. A measure-valued process related to the parabolic Anderson model. Prog. Prob., 2002, 52: 219-227

[19]

Nualart D., Ouknine Y.. Regularization of quasilinear heat equations by a fractional noise. Stoch. Dyn., 2004, 4(2): 201-221

[20]

Nualart D., Rozovskii B.. Weighted stochastic Sobolev spaces and bilinear SPDEs driven by spacetime white noise. J. Funct. Anal., 1997, 149(1): 200-225

[21]

Nualart D., Zakai M.. Generalized Brownian functionals and the solution to a stochastic partial differential equation. J. Funct. Anal., 1989, 84(2): 279-296

[22]

Nualart D.. Stochastic calculus with respect to the fractional Brownian motion and applications. Cont. Math., 2003, 336: 3-39

[23]

Nualart D.. The Malliavin Calculus and Related Topics, 2006, Heidelberg: Springer-Verlag

[24]

Podlubny I.. Fractional Differential Equations, 1999, San Diego: Academic Press

[25]

Uemura H.. Construction of the solution of 1-dimensional heat equation with white noise potential and its asymptotic behavior. Stoch. Anal. Appl., 1996, 14(4): 487-506

[26]

Walsh J.. An introduction to stochastic partial differential equations. Ecole d’Eté de Probabilité de Saint Fleur XIV, Lecture Notes in Math., 1986, Berlin: Springer-Verlag 265-439

[27]

Zaslavsky G. M.. Fractional kinetic equations for Hamiltonian chaos. Phys. D, 1994, 76(1–3): 110-122

[28]

Zaslavsky G. M., Abdullaev S. S.. Scaling properties and anomalous transport of particles inside the stochastic layer. Phys. Rev. E, 1995, 51(5): 3901-3910

[29]

Zhang T., Zheng W.. SPDEs driven by space-time white noises in high dimensions: absolute continuity of the law and convergence of solutions. Stoch. Stoch. Rep., 2003, 75(3): 103-128

AI Summary AI Mindmap
PDF

118

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/