Existence of canards under non-generic conditions

Feng Xie , Maoan Han

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 239 -250.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 239 -250. DOI: 10.1007/s11401-008-0225-4
Article

Existence of canards under non-generic conditions

Author information +
History +
PDF

Abstract

The canard phenomenon occurring in planar fast-slow systems under nongeneric conditions is investigated. When the critical manifold has a non-generic fold point, by using the method of asymptotic analysis combined with the recently developed blow-up technique, the existence of a canard is established and the asymptotic expansion of the parameter for which a canard exists is obtained.

Keywords

Canard / Slow manifold / Singular perturbation / Blow-up / Non-generic condition

Cite this article

Download citation ▾
Feng Xie, Maoan Han. Existence of canards under non-generic conditions. Chinese Annals of Mathematics, Series B, 2009, 30(3): 239-250 DOI:10.1007/s11401-008-0225-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Benoit E., Callot J.-L., Diener F., Diener M.. Chasse au canard. Collect. Math., 1981, 32: 37-119

[2]

Bobkova A. S., Kolesov A. Yu., Rozov N. Kh.. The “duck survival” problem in three-dimensional singularly perturbed systems with two slow variables. Math. Notes, 2002, 71(6): 749-760

[3]

Brøns M., Bar-Eli K.. Canard explosion and excitation in a model of the Belousov-Zhabotinsky reaction. J. Phys. Chem., 1991, 95(22): 8706-8713

[4]

Callot J.-L., Diener F., Diener M.. Le Problème de la “chasse au canard”. C. R. Acad. Sci. Paris, 1978, 286: 1059-1061

[5]

Chumakova G. A., Chumakova N. A.. Relaxation oscillations in a kinetic model of catalytic hydrogen oxidation involving a chase on canards. Chem. Eng. J., 2003, 91(2–3): 151-158

[6]

Dumortier F.. Szlomiuk D.. Techniques in the theory of local bifurcations: Blow-up, normal forms, nilpotent bifurcations, singular perturbations, Bifurcations and Periodic Orbits of Vector Fields. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 1993, Dordrecht: Kluwer Academic Publishers 17-73

[7]

Dumortier F., Roussarie R.. Canard cycles and center manifolds. Mem. Amer. Math. Soc., 1996, 121(577): 1-100

[8]

Eckhaus W.. Relaxation oscillations including a standard chase on French ducks. Lect. Notes Math., 1983, 985: 449-494

[9]

Fenichel N.. Geometric singular perturbation theory for ordinary differential equations. J. Diff. Eqs., 1979, 31(1): 53-98

[10]

Guckenheimer J., Holmes P.. Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields, 1983, New York: Springer-Verlag

[11]

Han M. A.. Periodic Solutions and Bifurcation Theory of Dynamical Systems (in Chinese), 2002, Beijing: Science Press

[12]

Han M. A., Bi P., Xiao D. M.. Bifurcation of limit cycles and separatrix loops in singular Lienard systems. Chaos Solitons Fractals, 2004, 20(3): 529-546

[13]

Jones C. K. R. T.. Geometric singular perturbation theory, Dynamical Systems. Lect. Notes Math., 1995, New York: Springer-Verlag 44-120

[14]

Kolesov A. Yu., Mishchenko E. F., Rozov N. Kh.. Solution to singularly perturbed boundary value problems by the duck hunting method. Proc. Steklov Inst. Math., 1999, 224: 187-207

[15]

Krupa M., Szmolyan P.. Extending Geometric singular perturbation theory to non-hyperbolic points — fold and canard points in two dimensions. SIAM J. Math. Anal., 2001, 33(2): 286-314

[16]

Krupa M., Szmolyan P.. Relaxation oscillation and canard explosion. J. Diff. Eqs., 2001, 174(2): 312-368

[17]

Kuznetsov Y. A.. Elements of Applied Bifurcation Theory, 1995, New York: Springer-Verlag

[18]

Li C. P.. Duck solutions: A new kind of bifurcation phenomenon in relaxation oscillations. Acta Math. Sinica, New Ser., 1996, 12(1): 89-104

[19]

Liu X. B., Zhu D. M.. Bifurcation of degenerate homoclinic orbits to saddle-center in reversible systems. Chin. Ann. Math., 2008, 29B(6): 575-584

[20]

de Maesschalck P., Dumortier F.. Time analysis and entry-exit relation near planar turning points. J. Diff. Eqs., 2005, 215(2): 225-267

[21]

Mishchenko E. F., Kolesov Yu. S., Kolesov A. Yu. Asymptotic Methods in Singularly Perturbed Systems, 1994, New York, London: Connsultants Bureau

[22]

Moehlis J.. Canards in a surface oxidation reaction. J. Nonlinear Sci., 2002, 12(4): 319-345

[23]

Shchepakina E., Sobolev V.. Integral manifolds, canards and black swans. Nonlinear Anal., 2001, 44(7): 897-908

[24]

Stiefenhofer M.. Singular perturbation with Hopf points in the fast dynamics. Z. Angew. Math. Phys., 1998, 49(4): 602-629

[25]

Szmolyan P., Wechselberger M.. Canards in ℝ3. J. Diff. Eqs., 2001, 177(2): 419-453

[26]

Xie F., Han M. A., Zhang W. J.. Canard phenomena in oscillations of a surface oxidation reaction. J. Nonlinear Sci., 2005, 15(6): 363-386

[27]

Xie F., Han M. A., Zhang W. J.. Existence of canard manifolds in a class of singularly perturbed systems. Nonlinear Anal., 2006, 64(3): 457-470

[28]

Ye Z. Y., Han M. A.. Bifurcations of invariant tori and subharmonic solutions of singularly perturbed system. Chin. Ann. Math., 2007, 28B(2): 135-148

AI Summary AI Mindmap
PDF

108

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/