The generalized prime number theorem for automorphic L-functions

Hengcai Tang

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 251 -260.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (3) : 251 -260. DOI: 10.1007/s11401-008-0172-0
Article

The generalized prime number theorem for automorphic L-functions

Author information +
History +
PDF

Abstract

Let π and π′ be automorphic irreducible cuspidal representations of GL m(ℚ$\mathbb{Q}_\mathbb{A} $) and GL m′ (ℚ$\mathbb{Q}_\mathbb{A} $), respectively, and L(s, π × $\tilde \pi '$) be the Rankin-Selberg L-function attached to π and π′. Without assuming the Generalized Ramanujan Conjecture (GRC), the author gives the generalized prime number theorem for L(s, π × $\tilde \pi '$) when ππ′. The result generalizes the corresponding result of Liu and Ye in 2007.

Keywords

Perron’s formula / Prime number theorem / Rankin-Selberg L-functions

Cite this article

Download citation ▾
Hengcai Tang. The generalized prime number theorem for automorphic L-functions. Chinese Annals of Mathematics, Series B, 2009, 30(3): 251-260 DOI:10.1007/s11401-008-0172-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Davenport H.. Multiplicative Number Theory, 1980 2 Berlin: Springer-Verlag

[2]

Gelbart S. S., Lapid E. M., Sarnak P.. A new method for lower bounds of L-functions. C. R. Acad. Sci. Paris, 2004, 339: 91-94

[3]

Gelbart S. S., Shahidi F.. Boundedness of automorphic L-functions in vertical strips. J. Amer. Math. Soc., 2001, 14: 79-107

[4]

Godement R., Jaquet H.. Zeta functions of simple algebras, 1972, Berlin: Springer-Verlag

[5]

Ikehara S.. An extension of Landau’s theorem in the analytic theory of numbers. J. Math. Phys. M. I. T., 1931, 10: 1-12

[6]

Ivić A.. The Riemann Zeta-Function, 1985, New York: John Wiley and Sons

[7]

Jacquet H., Piatetski I. I., Shalika J.. Rankin-Selberg convolutions. Amer. J. Math., 1983, 105: 367-464

[8]

Jacquet H., Shalika J. A.. On Euler products and the classification of automorphic representations I. Amer. J. Math., 1981, 103: 499-558

[9]

Jacquet H., Shalika J. A.. On Euler products and the classification of automorphic representations II. Amer. J. Math., 1981, 103: 777-815

[10]

Liu J. Y., Wang Y. H., Ye Y. B.. A proof of Selberg’s orthogonality and uniqueness of factorization of automorphic L-functions. Manuscripta Math., 2005, 118: 135-149

[11]

Liu J. Y., Ye Y. B.. Perron’s formula and the prime number theorem for automorphic L-functions. Pure Appl. Math. Quarterly, 2007, 3: 481-497

[12]

Liu J. Y., Ye Y. B.. Weighted Selberg’s orthogonality for automorphic L-functions. Forum Math., 2005, 17: 493-512

[13]

Liu J. Y., Ye Y. B.. Selberg’s orthogonality conjecture for automorphic L-functions. Amer. J. Math., 2005, 127: 837-849

[14]

Moreno C. J.. Explicit formulas in the theory of automorphic forms, 1977, Berlin: Springer-Verlag 73-216

[15]

Moreno C. J.. Analytic proof of the strong multiplicity one theorem. Amer. J. Math., 1985, 107: 163-206

[16]

Sarnak P.. Nonvanishing of L-functions on Res = 1, Contributions to Automorphic Forms, Geometry, and Number Theory, 2004, Baltimore: Johns Hopkins University Press 719-732

[17]

Shahidi F.. On certain L-functions. Amer. J. Math., 1981, 103: 297-355

[18]

Shahidi F.. Local coefficients as Artin factors for real groups. Duke Math. J., 1985, 52: 973-1007

[19]

Shahidi F.. Fourier transforms of intertwining operators and Plancherel measures for GL(n). Amer. J. Math., 1984, 106: 67-111

[20]

Shahidi F.. A proof of Lanlands conjecture on Plancherel measure; complementary series for p-adic groups. Ann. Math., 1990, 132: 273-330

[21]

Yi H. X., Yang C. J.. Uniqueness of Meromorphic Functions (in Chinese), 1995, Beijing: Science Press

AI Summary AI Mindmap
PDF

107

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/