Weighted profile least squares estimation for a panel data varying-coefficient partially linear model

Bin Zhou , Jinhong You , Qinfeng Xu , Gemai Chen

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 247 -272.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (2) : 247 -272. DOI: 10.1007/s11401-008-0153-3
Article

Weighted profile least squares estimation for a panel data varying-coefficient partially linear model

Author information +
History +
PDF

Abstract

This paper is concerned with inference of panel data varying-coefficient partially linear models with a one-way error structure. The model is a natural extension of the well-known panel data linear model (due to Baltagi 1995) to the setting of semiparametric regressions. The authors propose a weighted profile least squares estimator (WPLSE) and a weighted local polynomial estimator (WLPE) for the parametric and nonparametric components, respectively. It is shown that the WPLSE is asymptotically more efficient than the usual profile least squares estimator (PLSE), and that the WLPE is also asymptotically more efficient than the usual local polynomial estimator (LPE). The latter is an interesting result. According to Ruckstuhl, Welsh and Carroll (2000) and Lin and Carroll (2000), ignoring the correlation structure entirely and “pretending” that the data are really independent will result in more efficient estimators when estimating nonparametric regression with longitudinal or panel data. The result in this paper shows that this is not true when the design points of the nonparametric component have a closeness property within groups. The asymptotic properties of the proposed weighted estimators are derived. In addition, a block bootstrap test is proposed for the goodness of fit of models, which can accommodate the correlations within groups. Some simulation studies are conducted to illustrate the finite sample performances of the proposed procedures.

Keywords

Semiparametric / Panel data / Local polynomial / Weighted estimation / Block bootstrap

Cite this article

Download citation ▾
Bin Zhou, Jinhong You, Qinfeng Xu, Gemai Chen. Weighted profile least squares estimation for a panel data varying-coefficient partially linear model. Chinese Annals of Mathematics, Series B, 2010, 31(2): 247-272 DOI:10.1007/s11401-008-0153-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baltagi B. H.. Econometric Analysis of Panel Data, 1995, New York: John Wiley & Sons

[2]

Cai Z., Fan J., Yao Q.. Functional-coefficient regression models for nonlinear time series. J. Amer. Statist. Assoc., 2000, 95: 941-956

[3]

Carroll R. J., Ruppert D., Welsh A. H.. Nonparametric estimation via local estimating equations. J. Amer. Statist. Assoc., 1998, 93: 214-227

[4]

Fan J. Q., Huang T.. Profile likelihood inferences on semiparametric varying-coefficient partially linear models. Bernoulli, 2005, 11(6): 1031-1057

[5]

Fan J. Q., Zhang W.. Statistical estimation in varying coefficient models. Ann. Statist., 1999, 27: 1491-1518

[6]

Hoover D. R., Rice J. A., Wu C. O., Yang L. P.. Nonparametric smoothing estimates of time-varying coeffiocient models with longitudinal data. Biometrika, 1998, 85: 809-822

[7]

Huang J. Z., Wu C. O., Zhou L.. Polynomial spline estimation and inference for varying coefficient models with longitudinal data. Statist. Sinica, 2004, 14: 763-788

[8]

Kniesner, T. and Li, Q., Semiparametric panel data models with dynamic adjustment: Theoretical considerations and an application to labor supply, University of Guelph, manuscript, 1994.

[9]

Li Q., Huang C. J., Li D., Fu T. T.. Semiparametric smooth coefficient models. J. Business and Econ. Statist., 2002, 20: 412-422

[10]

Lin X. H., Carroll R. J.. Nonparametric function estimation for clustered data when the predictor is measured without/with error. J. Amer. Statist. Assoc., 2000, 95: 520-534

[11]

Müller H. G., Zhao P.. On a semiparametric variance function model and a test for heteroscedasticity. Ann. Statist., 1995, 23: 946-967

[12]

Ruckstuhl A. F., Welsh A. H., Carroll R. J.. Nonparametric function estimation of the relationship between two repeatedly measured variables. Statist. Sinica, 2000, 10: 51-71

[13]

Shi J., Lau T. S.. Empirical likelihood for partially linear models. J. Multivariate Anal., 2000, 72: 132-149

[14]

Stout W. F.. Almost Sure Convergence, 1974, New York: Academic Press

[15]

Verbeke G., Molenberghs G.. Linear Mixed Models for Longitudinal Data, Springer Series in Statistics, 2000, New York: Springer-Verlag

[16]

Wu C. O., Chiang C. T., Hoover D. R.. Asymptotic confidence regions for kernel smoothing of a varying-coefficient model with longitudinal data. J. Amer. Statist. Assoc, 1998, 93: 1388-1402

[17]

Xia Y., Li W. K.. On the estimation and testing of functional-coefficient linear models. Statistica Sinica, 1999, 9: 737-757

[18]

You J. H., Xu Q. F., Zhou B.. Statistical inference for partially linear regression models with measurement errors. Chin. Ann. Math., 2008, 29B(2): 207-222

[19]

Zeger S. L., Diggle P. J.. Semiparametric model for longitudinal data with application to CD4 cell numbers in HIV seroconvertiers. Biometrics, 1994, 50: 689-699

[20]

Zhang W., Lee S. Y., Song X.. Local polynomial fitting in semivarying coefficient models. J. Multivariate Anal., 2002, 82: 166-188

[21]

Zhou, Y. and You, J. H., Strong convergence rates of several estimators in varying-coefficient partially linear models, University of North Carolina at Chapel Hill, manuscript, 2003.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/