Nontrivial solutions of superquadratic Hamiltonian systems with Lagrangian boundary conditions and the L-index theory

Chong Li , Chungen Liu

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 597 -610.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 597 -610. DOI: 10.1007/s11401-008-0112-z
Article

Nontrivial solutions of superquadratic Hamiltonian systems with Lagrangian boundary conditions and the L-index theory

Author information +
History +
PDF

Abstract

In this paper, the authors study the existence of nontrivial solutions for the Hamiltonian systems $\dot z$(t) = JH(t, z(t)) with Lagrangian boundary conditions, where is a semipositive symmetric continuous matrix and satisfies a superquadratic condition at infinity. We also obtain a result about the L-index.

Keywords

L-index / Nontrivial solution / Hamiltonian systems / Lagrangian boundary conditions / Superquadratic condition

Cite this article

Download citation ▾
Chong Li, Chungen Liu. Nontrivial solutions of superquadratic Hamiltonian systems with Lagrangian boundary conditions and the L-index theory. Chinese Annals of Mathematics, Series B, 2008, 29(6): 597-610 DOI:10.1007/s11401-008-0112-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Abbondandolo A., Figalli A.. High action orbits for Tonelli Lagrangians and superlinear Hamiltonians on compact configuration spaces. J. Diff. Equ., 2007, 234: 626-653

[2]

Arnold V. I.. The first steps of symplectic topology. Russian Math. Surv., 1986, 41: 1-21

[3]

Bahri A., Berestycki H.. Forced vibrations of superquadratic Hamiltonian systems. Acta Math., 1984, 152: 143-197

[4]

Benci V., Rabinowitz P. H.. Critical point theorems for indefinite functions. Inven. Math., 1979, 52: 241-273

[5]

Chang K. C.. Infinite Dimensional Morse Theory and Multiple Solution Problems, 1993, Basel, Boston, Berlin: Birkhäuser Verlag

[6]

Ekeland I.. Convexity Method in Hamiltonian Mechanics, 1990, Berlin: Springer-Verlag

[7]

Ekeland I., Hofer H.. Subharmonics of convex Hamiltonian systems. Comm. Pure Appl. Math., 1987, 40: 1-37

[8]

Felmer P.. Periodic solutions of superquadratic Hamiltonian systems. J. Diff. Equ., 1993, 102: 188-207

[9]

Fei, G., Nontrivial periodic solutions of asymptotically linear Hamiltonian systems, Elec. Jour. Diff. Equ., 2001, 1–17.

[10]

Fei G., Qiu Q.. Periodic solutions of asymptotically linear Hamiltonian syatems. Chin. Ann. Math., 1997, 18B(3): 359-372

[11]

Ghoussoub N.. Location, multiplicity and Morse indices of minimax critical points. J. Reine Angew Math., 1991, 417: 27-76

[12]

Hofer H., Zehnder E.. Symplectic Invariants and Hamiltonian Dynamics, 1994, Basel, Boston, Berlin: Birkhäuser Verlag

[13]

Liu, C., Asymptotically linear Hamiltonian systems with Lagrangian boundary conditions, Pacific J. Math., in press.

[14]

Liu C.. Maslov-type index theory for symplectic paths with Lagrangian boundary conditions. Adv. Non. Stu., 2007, 7: 131-161

[15]

Liu C.. Subharmonic solutions of Hamiltonian systems. Nonlinear Anal. TMA, 2000, 42: 185-198

[16]

Long Y.. Index Theory for Symplectic Paths with Applications, 2002, Basel, Boston, Berlin: Birkhäuser Verlag

[17]

Long Y.. Multiple solutions of perturbed superquadratic second order Hamiltonian systems. Trans. Amer. Math. Soc., 1989, 311: 749-780

[18]

Long Y.. Periodic solutions of perturbed superquadratic Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa., Series, 1990, 4(17): 35-77

[19]

Long Y., Zhang D., Zhu C.. Multiple brake orbits in bounded convex symmetric domains. Adv. in Math., 2006, 203: 568-635

[20]

Mawhin J., Willem M.. Critical Point Theory and Hamiltonian Systems, 1989, New York: Springer-Verlag

[21]

McDuff D., Salamon D.. Introduction to Symplectic Topology, 1998, Oxford: Clarendon Press

[22]

Mohnke K.. Holomorphic disks and the Chord conjecture. Ann. of Math., 2001, 154: 219-222

[23]

Rabinowitz P. H.. Minimax Methods in Critical Point Theory with Applications to Differential Equations, 1986, Providence, RI: A. M. S.

[24]

Rabinowitz P. H.. Periodic solution of Hamiltonian systems. Comm. Pure Appl. Math., 1978, 31: 157-184

[25]

Rabinowitz P. H.. On subharmonic solutions of Hamiltonian systems. Comm. Pure Appl. Math., 1980, 33: 609-633

AI Summary AI Mindmap
PDF

119

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/