Global well-posedness of the BCL system with viscosity

Junqi Hu

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 153 -172.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (2) : 153 -172. DOI: 10.1007/s11401-008-0095-9
Article

Global well-posedness of the BCL system with viscosity

Author information +
History +
PDF

Abstract

The BCL system, a kind of equations governing the motion of the free surface of water waves in ℝ3, is studied. Some results on the global existence, uniqueness and regularity of solutions to such system with small initial data are obtained.

Keywords

Pseudo-differential operator / Water waves / Global well-posedness

Cite this article

Download citation ▾
Junqi Hu. Global well-posedness of the BCL system with viscosity. Chinese Annals of Mathematics, Series B, 2009, 30(2): 153-172 DOI:10.1007/s11401-008-0095-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Amick C. J.. Regularity and uniqueness of solutions to the Boussinesq system of equations. J. Diff. Eqs., 1983, 54: 231-247

[2]

Bona J. L., Chen M., Saut J. C.. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media, I, Derivation and linear theory. J. Nonlinear Sci., 2002, 12: 283-318

[3]

Bona J. L., Chen M., Saut J. C.. Boussinesq equations and other systems for small-amplitude long waves in nonlinear dispersive media, II, The nonlinear theory. Nonlinearity, 2004, 17: 925-952

[4]

Bona J. L., Colin T., Lannes D.. Long wave approximations for water waves. Arch. Rational Mech. Anal., 2005, 178: 373-410

[5]

Boussineq J. V.. Theorie generale des mouvements qui sont propages dans un canal retangulaire hrizontal. Comp. Redus. Acad. Sci., 1871, 73: 256-260

[6]

Bridges T. J., Fan E. G.. Solitary waves, perodic waves, and a stablity analysis for Zufiria’s higher-order Boussinesq model for shallow water waves. Phy. Lett., 2004, 326A: 381-390

[7]

Hu J. Q.. Decay estimates of solutions to the linearized BCL system with viscosity (in Chinese). Chin. Ann. Math., 2008, 29A(2): 159-178

[8]

Johnson R. S.. A Modern Introduction to the Mathematical Theory of the Water Waves, Cambridge Texts in Applied Mathematics, 1997, Cambridge: Cambridge University Press

[9]

Kaup D. J.. A higher-order water-wave equation and the method for solving it. Progr. Theo. Phy., 1975, 54: 396-408

[10]

Lannes D.. Well-posedness of the water-waves equations. J. Amer. Math. Soc., 2005, 18: 605-654

[11]

Li T. T.. Ciarlet P. G., Lions J.. Global classical solutions for quasilinear hyperbolic systems, Research in Applied Mathematics, 1994, New York: Chichester Wiley

[12]

Li Y. S.. Some water wave equations and integrability. J. Nonlinear Math. Phy., 2005, 12(Supplement1): 466-481

[13]

Schonbek M. E.. Existence of solutions for the Boussinesq system of equations. J. Diff. Eqs., 1981, 42: 325-352

[14]

Wang W. K., Wang Z. J.. The pointwise estimates to solutions for 1-dimensional linear thermoelastic system with second sound. J. Math. Anal. Appl., 2007, 326(2): 1061-1075

[15]

Whitham G. B.. Linear and Nonlinear Waves, 1974, New York: Wiley

[16]

Wu S. J.. Well-posedness in Sobolev spaces of the full water wave problem in 2-D. Invent. Math., 1991, 130: 39-72

[17]

Wu S. J.. Well-posedness in Sobolev spaces of the full water wave problem in 3-D. J. Amer. Math. Soc., 1999, 12: 445-495

[18]

Zheng S. M.. Nonlinear Parabolic Equations and Hyperbolic-Parabolic Coupled Systems, 1995, New York: Longman Press

AI Summary AI Mindmap
PDF

131

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/