On the normal subgroup with exactly two G-conjugacy class sizes

Xianhe Zhao , Xiuyun Guo

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 427 -432.

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (4) : 427 -432. DOI: 10.1007/s11401-008-0088-8
Article

On the normal subgroup with exactly two G-conjugacy class sizes

Author information +
History +
PDF

Abstract

Let G be a finite group with a non-central Sylow r-subgroup R, Z(G) the center of G, and N a normal subgroup of G. The purpose of this paper is to determine the structure of N under the hypotheses that N contains R and the G-conjugacy class size of every element of N is either 1 or m. Particularly, it is shown that N is Abelian if NZ(G) = 1 and the G-conjugacy class size of every element of N is either 1 or m.

Keywords

Normal subgroups / Conjugacy class sizes / Nilpotent groups

Cite this article

Download citation ▾
Xianhe Zhao, Xiuyun Guo. On the normal subgroup with exactly two G-conjugacy class sizes. Chinese Annals of Mathematics, Series B, 2009, 30(4): 427-432 DOI:10.1007/s11401-008-0088-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Baer R.. Group elements of prime power index. Trans. Amer. Math. Soc., 1953, 75(1): 20-47

[2]

Beltrán A., Felipe M. J.. Finite groups with two p-regular conjugacy class lengths. Bull. Austral. Math. Soc., 2003, 67: 163-169

[3]

Burnside W.. Theory of Groups of Finite Order, 1911, Cambridge: Cambridge University Press

[4]

Camina A. R., Camina R. D.. Implications of conjugacy class size. J. Group Theory, 1998, 1(3): 257-269

[5]

Chillag D., Herzog M.. On the length of the conjugacy classes of finite groups. J. Algebra, 1990, 131(1): 110-125

[6]

Fein B., Kantor W. M., Schacher M.. Relative Brauer groups II. J. Reine Angew. Math., 1981, 328: 39-57

[7]

Huppert B.. Character Theory of Finite Groups, de Gruyter Expositions in Mathematics, 1998, Berlin: Walter de Gruyter

[8]

Itô N.. On finite groups with given conjugate type I. Nagoya Math. J., 1953, 6: 17-28

[9]

Riese U., Shahabi M. A.. Subgroups which are the union of four conjugacy classes. Comm. Algebra, 2001, 29(2): 695-701

[10]

Shahryari M., Shahabi M. A.. Subgroups which are the union of three conjugate classes. J. Algebra, 1998, 207(1): 326-332

[11]

Shi W. J.. A class of special minimal normal subgroups (in Chinese). J. Southwest Teachers College, 1984, 9: 9-13

[12]

Wang J.. A special class of normal subgroups (in Chinese). J. Chengdu Univ. Sci. Tech., 1987, 4: 115-119

[13]

You X. Z., Qian G. H.. A new graph related to conjugacy classes of finite groups (in Chinese). Chin. Ann. Math., 2007, 28A(5): 631-636

[14]

Zhang J. P.. Finite groups with many conjugate elements. J. Algebra, 1994, 170(2): 608-624

AI Summary AI Mindmap
PDF

140

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/