On lower dimensional invariant tori in C d reversible systems

Jing Zhang

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (5) : 459 -486.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (5) : 459 -486. DOI: 10.1007/s11401-008-0082-1
Article

On lower dimensional invariant tori in C d reversible systems

Author information +
History +
PDF

Abstract

In this paper, a result on the persistence of lower dimensional invariant tori in C d reversible systems is obtained under some conditions. The theorem is proved for any d which is larger than some constants.

Keywords

Reversible systems / Lower dimensional invariant tori / KAM step

Cite this article

Download citation ▾
Jing Zhang. On lower dimensional invariant tori in C d reversible systems. Chinese Annals of Mathematics, Series B, 2008, 29(5): 459-486 DOI:10.1007/s11401-008-0082-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Bourgain J.. On Melnikov’s persistency problem. Math. Res. Lett., 1997, 4: 445-458

[2]

Bourgain J.. Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE. Internat. Math. Res. Notices, 1994, 11: 475-497

[3]

Chierchia L., Qian D.. Moser’s theorem for lower dimensional tori. J. Diff. Eqs., 2004, 206: 55-93

[4]

Craig W., Wayne C. E.. Newton’s method and periodic solutions of nonlinear wave equations. Commum. Pure Appl. Math., 1993, 46: 1409-1498

[5]

Eliasson L. H.. Perturbations of stable invariant tori for Hamiltonian systems. Ann. Scuola Norm. Sup. Pisa., 1988, 15: 115-147

[6]

Graff S. M.. On the continuation of stable invariant tori for Hamiltonian systems. J. Diff. Eqs., 1974, 15: 1-69

[7]

Kuksin S. B.. Nearly Integrable Infinite Dimensional Hamiltonian Systems. Lecture Notes in Math., 1993, Berlin: Springer-Verlag

[8]

Liu B.. On lower dimensional invariant tori in reversible systems. J. Diff. Eqs., 2001, 176: 158-194

[9]

Melnikov V. K.. On some cases of the conservation of conditionally periodic motions under a small change of the Hamiltonian function. Soviet Math. Dokl., 1965, 6: 1592-1596

[10]

Moser J.. Convergent series expansions for quasiperiodic motions. Math. Ann., 1967, 169: 136-176

[11]

Pöschel J.. On elliptic lower dimensional tori in Hamiltonian systems. Math. Z., 1989, 202: 559-608

[12]

Salamon D., Zehnder E.. KAM theory in configuration space. Comm. Math. Helv., 1989, 64: 84-132

[13]

Sevryuk M. B.. Invariant m-dimensional tori of reversible systems with phase space of dimension greater than 2m. J. Sovjet. Math., 1990, 51: 2374-2386

[14]

Sevryuk M. B.. Reversible Systems. Lecture Notes in Math, 1986, New York/Berlin: Springer-Verlag

[15]

Sevryuk M. B.. The iteration-approximation decoupling in the reversible KAM theory. Chaos, 1995, 5: 552-565

[16]

Sevryuk M. B.. The finite-dimensional reversible KAM theroy. Phys. D, 1998, 112: 132-147

[17]

Xu J., You J., Qiu Q.. Invariant tori for nearly integrable Hamiltonian systems with degeneracy. Math. Z., 1997, 226: 375-387

[18]

You J.. Perturbations of lower dimensional tori for Hamiltonian systems. J. Diff. Eqs., 1999, 152: 1-29

[19]

Zehnder E.. Generalized implicit function theorems with applications to some small divisor problem, I and II. Comm. Pure Appl. Math., 1975, 28: 91-140

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/