The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data

Ling Hsiao , Qiangchang Ju , Fucai Li

Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (1)

PDF
Chinese Annals of Mathematics, Series B ›› 2009, Vol. 30 ›› Issue (1) DOI: 10.1007/s11401-008-0039-4
Article

The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data

Author information +
History +
PDF

Abstract

It is showed that, as the Mach number goes to zero, the weak solution of the compressible Navier-Stokes equations in the whole space with general initial data converges to the strong solution of the incompressible Navier-Stokes equations as long as the later exists. The proof of the result relies on the new modulated energy functional and the Strichartz’s estimate of linear wave equation.

Keywords

Compressible Navier-Stokes equations / Incompressible Navier-Stokes equations / Low Mach number limit / Modulated energy functional / Strichartz’s estimate

Cite this article

Download citation ▾
Ling Hsiao, Qiangchang Ju, Fucai Li. The incompressible limits of compressible Navier-Stokes equations in the whole space with general initial data. Chinese Annals of Mathematics, Series B, 2009, 30(1): DOI:10.1007/s11401-008-0039-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Brenier Y.. Convergence of the Vlasov-Poisson system to the incompressible Euler equations. Comm. Part. Diff. Eqs., 2000, 25(3–4): 737-754

[2]

Danchin R.. Zero Mach number limit in critical spaces for compressible Navier-Stokes equations. Ann. Sci. É Ecole Norm. Sup. (4), 2002, 35(1): 27-75

[3]

Desjardins B., Grenier E.. Low Mach number limit of viscous compressible flows in the whole space. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci., 1999, 455(1986): 2271-2279

[4]

Feireisl E., Novotný A., Petzeltová H.. On the existence of globally defined weak solutions to the Navier-Stokes equations. J. Math. Fluid Mech., 2001, 3(4): 358-392

[5]

Hoff D.. The zero-Mach limit of compressible flows. Comm. Math. Phys., 1998, 192(3): 543-554

[6]

Hsiao L., Li F. C., Wang S.. Convergence of the Vlasov-Poisson-Fokker-Planck system to the incom- pressible Euler equations. Sci. in Chin., Ser. A, 2006, 49(2): 255-266

[7]

Hsiao L., Li F. C., Wang S.. Coupled quasineutral and inviscid limit of the Vlasov-Poisson-Fokker- Planck system. Comm. Pure Appl. Anal., 2008, 7(3): 579-589

[8]

Kato T.. Nonstationary flows of viscous and ideal fluids in R 3. J. Func. Anal., 1972, 9(3): 296-305

[9]

Lions P. L., Masmoudi N.. Incompressible limit for a viscous compressible fluid. J. Math. Pures Appl. (99), 1998, 77(6): 585-627

[10]

Lions P. L.. Mathematical Topics in Fluid Mechanics, Compressible Models, 1998, New York: The Clarendon Press and Oxford University Press

[11]

Masmoudi N.. Incompressible, inviscid limit of the compressible Navier-Stokes system. Ann. Inst. H. Poincaré Anal. Non Linéaire, 2001, 18(2): 199-224

[12]

Masmoudi N.. Examples of singular limits in hydrodynamics. Handbook of Differential Equations, Evo- lutionary Equations, 2007, Amsterdam: North-Holland 195-275

[13]

McGrath F. J.. Nonstationary plane flow of viscous and ideal fluids. Arch. Rat. Mech. Anal., 1967, 27: 329-348

[14]

Schochet S.. Fast singular limits of hyperbolic PDEs. J. Diff. Eqs., 1994, 114(2): 476-512

[15]

Wang S., Jiang S.. The convergence of the Navier-Stokes-Poisson system to the incompressible Euler equations. Comm. Part. Diff. Eqs., 2006, 31(4–6): 571-591

AI Summary AI Mindmap
PDF

96

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/