Bifurcation of degenerate homoclinic orbits to saddle-center in reversible systems

Xingbo Liu , Deming Zhu

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 575 -584.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 575 -584. DOI: 10.1007/s11401-008-0038-5
Article

Bifurcation of degenerate homoclinic orbits to saddle-center in reversible systems

Author information +
History +
PDF

Abstract

The authors study the bifurcation of homoclinic orbits from a degenerate homoclinic orbit in reversible system. The unperturbed system is assumed to have saddle-center type equilibrium whose stable and unstable manifolds intersect in two-dimensional manifolds. A perturbation technique for the detection of symmetric and nonsymmetric homoclinic orbits near the primary homoclinic orbits is developed. Some known results are extended.

Keywords

Reversible system / Homoclinic orbits / Saddle-center / Bifurcation

Cite this article

Download citation ▾
Xingbo Liu, Deming Zhu. Bifurcation of degenerate homoclinic orbits to saddle-center in reversible systems. Chinese Annals of Mathematics, Series B, 2008, 29(6): 575-584 DOI:10.1007/s11401-008-0038-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Champneys A. R., Malomed B. A., Yang J., Kaup D. J.. Embedded solitons: solitary waves in resonance with the linear spectrum. Phys. D, 2001, 152: 340-354

[2]

Champneys A. R.. Homoclinic orbits in reversible system and their applications in mechanics, fluids and optics. Phys. D, 1998, 112: 158-186

[3]

Wagenknecht T., Champneys A. R.. When gap solitons become embedded solitons: an unfolding via Lin’s method. Phys. D, 2003, 177: 50-70

[4]

Vanderbauwhede A., Fiedler B.. Homoclinic period blow-up in reversible and conservative systems. Z. Angew. Math. Phys., 1992, 43: 292-318

[5]

Shilnikov L. P., Shilnikov A. L., Turaev D., Chua L. O.. Methods of Qualitative Theory in Nonlinear Dynamics, Part I, 1998, Singapore: World Scientific

[6]

Yagasaki K., Wagenknecht T.. Detection of symmetric homoclinic orbits to saddle-center in reversible systems. Phys. D, 2006, 214: 169-181

[7]

Lin X. B.. Using Melnikov’s method to solve Shilnikov’s problem. Proc. Roy. Soc., Edinburgh, 1990, 116A: 295-325

[8]

Klaus J., Knobloch J.. Bifurcation of homoclinic orbits to a saddle-center in reversible systems. Int. J. of Bifur. and Chaos, 2003, 13(9): 2603-2622

[9]

Wiggins S.. Global Bifurcation and Chaos, 1988, New York: Springer-Verlag

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/