A construction of the rational function sheaves on elliptic curves

Jianmin Chen , Yanan Lin

Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 585 -596.

PDF
Chinese Annals of Mathematics, Series B ›› 2008, Vol. 29 ›› Issue (6) : 585 -596. DOI: 10.1007/s11401-008-0036-7
Article

A construction of the rational function sheaves on elliptic curves

Author information +
History +
PDF

Abstract

The authors introduce an effective method to construct the rational function sheaf $\mathcal{K}$ on an elliptic curve $\mathbb{E}$, and further study the relationship between $\mathcal{K}$ and any coherent sheaf on $\mathbb{E}$. Finally, it is shown that the category of all coherent sheaves of finite length on $\mathbb{E}$ is completely characterized by $\mathcal{K}$.

Keywords

Elliptic curve / Coherent sheaf / Rational function sheaf

Cite this article

Download citation ▾
Jianmin Chen, Yanan Lin. A construction of the rational function sheaves on elliptic curves. Chinese Annals of Mathematics, Series B, 2008, 29(6): 585-596 DOI:10.1007/s11401-008-0036-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Atiyah M. F.. Vector bundles over an elliptic curve. Proc. London Math. Soc., 1957, 7: 414-452

[2]

Bodnarchuk L., Burban I., Drozd Y., Greuel G.. Vector bundles and torsion free sheaves on degenerations of elliptic curves. Global Aspects of Complex Geometry, 2006, Berlin: Springer 83-128

[3]

Brüning K., Burban I.. Coherent sheaves on an elliptic curve, Interactions between homotopy theory and algebra. Contemp. Math., 2007, 436: 297-436

[4]

Burban I., Kreussler B.. Derived categories of irreducible projective curves of arithmetic genus one. Compos. Math., 2006, 142(5): 1231-1262

[5]

Chen J., Lin Y.. Generic sheaves on elliptic curves. J. Algebra, 2008, 319(10): 4360-4371

[6]

Crawley-Boevey W.. Locally finitely presented additive categories. Comm. Algebra, 1994, 22: 1641-1674

[7]

Geigle W., Lenzing H.. A class of weighted projective curves arising in representation theory of finite dimensional algebras, 1987, Berlin/New York: Springer-Verlag 265-297

[8]

Hartshorne R.. Algebraic Geometry, 1977, New York: Springer-Verlag

[9]

Lenzing H.. Generic modules over tubular algebras, Advance in Algebra and Model Theory, 1997, London: Gordon-Breach 375-385

[10]

Lenzing, H., Hereditary categories, Handbook of Tilting Theory, London Mathematical Society Lecture Note Series, 332, 2007, 105–146.

[11]

Lenzing H., Meltzer H.. Sheaves on a weighted projective line of genus one, and representations of a tubular algebra. CMS Conf. Proc., 1993, 14: 313-337

[12]

Lenzing H., Reiten I.. Hereditary noetherian categories of positive Euler characteristic. Math. Z., 2006, 254: 133-171

[13]

Reiten I., Van Den Bergh M.. Noetherian hereditary Abelian categories satisfying Serre duality. J. A. M. S., 2002, 15: 295-366

[14]

Ringel C. M.. Infinite dimensional representations of finite dimensional hereditary algebras. Ist. Naz. Alta Mat., Symp. Math., 1979, 23: 321-412

[15]

Smith S. P.. Integral non-commutative spaces. J. Algebra, 2001, 246(2): 793-810

AI Summary AI Mindmap
PDF

113

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/