Koszul differential graded algebras and BGG correspondence II

Jiwei He , Quanshui Wu

Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 133 -144.

PDF
Chinese Annals of Mathematics, Series B ›› 2010, Vol. 31 ›› Issue (1) : 133 -144. DOI: 10.1007/s11401-008-0028-7
Article

Koszul differential graded algebras and BGG correspondence II

Author information +
History +
PDF

Abstract

The concept of Koszul differential graded (DG for short) algebra is introduced in [8]. Let A be a Koszul DG algebra. If the Ext-algebra of A is finite-dimensional, i.e., the trivial module A k is a compact object in the derived category of DG A-modules, then it is shown in [8] that A has many nice properties. However, if the Ext-algebra is infinite-dimensional, little is known about A. As shown in [15] (see also Proposition 2.2), A k is not compact if H(A) is finite-dimensional. In this paper, it is proved that the Koszul duality theorem also holds when H(A) is finite-dimensional by using Foxby duality. A DG version of the BGG correspondence is deduced from the Koszul duality theorem.

Keywords

Koszul differential graded algebra / Koszul duality / BGG correspondence

Cite this article

Download citation ▾
Jiwei He, Quanshui Wu. Koszul differential graded algebras and BGG correspondence II. Chinese Annals of Mathematics, Series B, 2010, 31(1): 133-144 DOI:10.1007/s11401-008-0028-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Avramov, L. L., Foxby, H. B. and Halperin, S., Differetial Graded Homological Algebra, preprint.

[2]

Bezrukavnikov R.. Koszul DG-algebras arising from configuration spaces. Geom. Funct. Anal., 1994, 4(2): 119-135

[3]

Bernstein I. N., Gelfand I. M., Gelfand S. I.. Algebraic bundles over ℙn and problems in linear algebra. Funct. Anal. Appl., 1979, 12: 212-214

[4]

Félix Y., Halperin S., Thomas J. C.. Rational Homotopy Theory. Graduate Texts in Mathematics, 2001, New York: Springer-Verlag

[5]

Frankild A., Jørgenson P.. Foxby equivalence, complete modules, and torsion modules. J. Pure Appl. Algebra, 2002, 174(2): 135-147

[6]

Green E. L., Martínez-Villa R.. Koszul and Yoneda algebras. Representation Theory of Algebras, 1996, 18: 247-297

[7]

Hartshorne R.. Residues and Duality. Lecture Notes in Mathematics, 1966, New York: Springer-Verlag

[8]

He J. W., Wu Q. S.. Koszul differential graded algebras and BGG correspondence. J. Algebra, 2008, 320(7): 2934-2962

[9]

Jørgensen P.. A noncommutative BGG correspondence. Pacific J. Math., 2005, 218(2): 357-378

[10]

Kontsevich, M. and Soibelman, Y., Notes on A -algebras, A -categories and non-commutative geometry I, 2006. arXiv:math.RA/0606241

[11]

Kříž I., May J. P.. Operads, Algebras, Modules and Motives. Astérisque, 1995, Paris: Société Mathématique de France

[12]

Löfwall C.. On the subalgebra generated by the one-dimensional elements in the Yoneda Ext-algebra. Algebra, Algebraic Topology and Their Interactions, 1986, New York: Springer-Verlag 291-338

[13]

Lu D. M., Palmieri J. H., Wu Q. S., Zhang J. J.. A -algebras for ring theorists. Algebra Colloq., 2004, 11(1): 91-128

[14]

Mao X. F., Wu Q. S.. Homological identities of DG algebras. Comm. Algebra, 2008, 36(8): 3050-3072

[15]

Mao X. F., Wu Q. S.. Compact DG modules and Gorenstein DG algebras. Sci. China Ser. A, 2009, 52(4): 648-676

[16]

Martínez-Villa R., Saorín M.. Koszul equivalences and dualities. Pacific J. Math., 2004, 214(2): 359-378

[17]

Miyachi J. I.. Localization of triangulated categories and derived categories. J. Algebra, 1991, 141(2): 463-483

[18]

Mori I.. Riemann-Roch like theorem for triangulated categories. J. Pure Appl. Algebra, 2004, 193(1–3): 263-285

[19]

Orlov, D., Derived categories of coherent sheaves and triangulated categories of singularities, 2005. arXiv: math.AG/0503632

[20]

Weibel C. A.. An Introduction to Homological Algebra, 1994, Cambridge: Cambridge University Press

AI Summary AI Mindmap
PDF

146

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/